Методы решения систем нелинейных уравнений. Алгебра

В этой главе рассматривается задача отыскания корней нелинейных уравнений и излагаются методы ее решения. Это делается несколько подробнее, чем обычно принято в учебниках по численным методам. Дело в том, что нелинейное уравнение представляет собой редкий пример задачи, которая может быть сравнительно полно исследована элементарными средствами и допускает наглядные геометрические иллюстрации. В то же время многие проблемы, возникающие при отыскании корней нелинейных уравнений, типичны, а некоторые методы их решения (в особенности метод простой итерации и метод Ньютона) допускают широкие обобщения и играют в вычислительной математике фундаментальную роль.

§ 4.1. Постановка задачи. Основные этапы решения

1. Постановка задачи.

Задача отыскания корней нелинейного уравнения с одним неизвестным вида

имеет многовековую историю, но не потеряла свою актуальность и в наши дни. Она часто возникает как элементарный шаг при решении различных научных и технических проблем. Напомним, что корнем (или решением) уравнения (4.1) называется значение х, при котором

Для справедливости большинства рассуждений данной главы достаточно предположить, что в окрестности каждого из искомых корней функция дважды непрерывно дифференцируема.

Корень х уравнения (4.1) называется простым, если противном случае (т. е. в случае корень х называется кратным. Целое число назовем кратностью корня х, если для Геометрически корень х соответствует точке пересечения графика функции с осью Корень х является простым, если график пересекает ось под ненулевым углом, и кратным, если пересечение происходит под нулевым углом. Функция график который изображен на рис. 4.1, имеет четыре корня. Корни простые, кратные.

Задача отыскания простых корней является существенно более простой (и чаще встречающейся), чем задача отыскания кратных корней. В действительности большинство методов решения уравнения (4.1) ориентировано именно на вычисление простых корней.

2. Уточнение постановки задачи.

В конкретной задаче часто интерес представляют не все корни уравнения, а лишь некоторые из них. Тогда постановку задачи уточняют, указывая на то, какие из корней подлежат определению (положительные корни, корни из заданного интервала, максимальный из корней и т.д.).

В подавляющем большинстве случаев представить решение уравнения (4.1) в виде конечной формулы оказывается невозможным. Даже для простейшего алгебраического уравнения степени

явные формулы, выражающие его корни через коэффициенты с помощью конечного числа арифметических операций и извлечения корней степени не выше найдены лишь при Однако уже для

уравнений пятой и более высоких степеней таких формул не существует. Этот замечательный факт, известный как теорема Абеля, был установлен в 30-е годы XIX в. Н. Абелем и Э. Галуа.

Невозможность найти точное решение нелинейного уравнения кажется огорчительной. Однако нужно признать, что желание найти точное числовое значение решения вряд ли следует считать разумным. Во-первых, в реальных исследованиях зависимость является лишь приближенным описанием, моделирующим истинную связь между параметрами у их. Поэтому точное решение х уравнения (4.1) все равно является лишь приближенным значением того параметра х, который в действительности соответствует значению . Во-вторых, даже если уравнение (4.1) допускает возможность нахождения решения в виде конечной формулы, то результат вычислений по этой формуле почти с неизбежностью содержит вычислительную погрешность и поэтому является приближенным.

Пример 4.1. Предположим, что исследование некоторого явления привело к необходимости решить уравнение

Воспользовавшись формулами (3.2) для корней квадратного уравнения, получим значения Найдены ли нами точные значения параметра Очевидно, нет. Скорее всего коэффициенты уравнения (4.3) известны приближенно и в лучшем случае они представляют округленные значения "истинных" коэффициентов. В действительности можно лишь утверждать, что

Предположим теперь, что "истинный" вид уравнения (4.3) таков: Тогда точные значения параметра можно вычислить по формуле Однако она лишь указывает на то, какие операции и в каком порядке следует выполнить. В данном случае точное вычисление по формуле невозможно, так как она содержит операцию извлечения квадратного корня. Вычисленные по ней значения неизбежно окажутся приближенными.

В дальнейшем мы откажемся от попыток найти точные значения корней уравнения (4.1) и сосредоточим внимание на методах решения более реалистичной задачи приближенного вычисления корней с заданной точностью

В данной главе под задачей отыскания решений уравнения (4.1) будем понимать задачу вычисления с заданной точностью конечного числа подлежащих определению корней этого уравнения.

3. Основные этапы решения.

Решение задачи отыскания корней нелинейного уравнения осуществляют в два этапа. Первый этап называется этапом локализации (или отделения) корней, второй - этапом итерационного уточнения корней.

Локализация корней. Отрезок содержащий только один корень х уравнения (4.1), называют отрезком локализации корня х. Цель этапа локализации считают достигнутой, если для каждого из подлежащих определению корней удалось указать отрезок локализации (его длину стараются по возможности сделать минимальной).

Прежде чем переходить непосредственно к отысканию отрезков локализации, имеет смысл провести предварительное исследование задачи для выяснения того, существуют ли вообще корни уравнения (4.1), сколько их и как они расположены на числовой оси.

Способы локализации корней многообразны, и указать универсальный метод не представляется возможным. Иногда отрезок локализации известен либо он определяется из физических соображений. В простых ситуациях хороший результат может давать графический метод (см. пример 4.2). Широко применяют построение таблиц значений функций вида При этом способе локализации о наличии на отрезке корня судят по перемене знака функции на концах отрезка (см. пример 4.3). Основанием для применения указанного способа служит следующая хорошо известная теорема математического анализа.

Теорема 4.1. Пусть функция непрерывна на отрезке и принимает на ею концах значения разных знаков, т. е. Тогда отрезок содержит по крайней мере один корень уравнения

К сожалению, корень четной кратности не удается локализовать на основании перемены знака с помощью даже очень подробной таблицы.

Дело в том, что в малой окрестности такого корня (например, корня на рис. 4.1) функция имеет постоянный знак.

Важно подчеркнуть, что далеко не всегда для успешного отыскания

корня х уравнения (4.1) необходимо полное решение задачи локализации. Часто вместо отрезка локализации достаточно найти хорошее начальное приближение к корню х. Пример 4.2. Локализуем корни уравнения

Для этого преобразуем уравнение к виду и построим графики функций (рис. 4.2). Абсциссы точек пересечения этих графиков являются корнями данного уравнения. Из рис. 4.2 видно, что уравнение имеет два корня и расположенные на отрезках и . Убедимся, что функция принимает на концах указанных отрезков значения разных знаков. Действительно, Следовательно, в силу теоремы 4.1 на каждом из отрезков и находится по крайней мере один корень.

Пример 4.3. Локализуем корни уравнения

Для этого составим таблицу значений функции на отрезке с шагом 0.4.

Таблица 4.1 (см. скан)

Из табл. 4.1 видно, что функция меняет знак на концах отрезков Теорема 4.1 дает основание утверждать, что каждый из этих отрезков содержит по крайней мере один корень. Учитывая, что в силу основной теоремы алгебры многочлен третьей степени не может иметь более трех корней, заключаем, что полученные три отрезка содержат ровно по одному корню. Таким образом, корни локализованы.

Итерационное уточнение корней. На этом этапе для вычисления каждого из корней с точностью используют тот или иной итерационный метод, позволяющий построить последовательность приближений к корню

Общее представление об итерационных методах и основные определения были даны в § 3.3. Введем дополнительно некоторые определения.

Итерационный метод называют одношаговым, если для вычисления очередного приближения используется только одно предыдущее приближение и к шаговым, если для вычисления используются к предыдущих приближений Заметим, что для построения итерационной последовательности одношаговым методом требуется задание только одного начального приближения в то время как при использовании -шагового метода - к начальных приближений

Скорость сходимости - одна из важнейших характеристик итерационных методов. Говорят, что метод сходится со скоростью геометрической прогрессии, знаменатель которой если для всех справедлива следующая оценка:

Как нетрудно видеть, из оценки (4.5) действительно вытекает сходимость метода.

Пусть одношаговый итерационный метод обладает следующим свойством: существует -окрестность корня х такая, что если приближение принадлежит этой окрестности, то справедлива оценка

где постоянные. В этом случае число называют порядком сходимости метода. Если то говорят, что метод обладает линейной скоростью сходимости в указанной -окрестности корня. Если то принято говорить о сверхлинейной скорости сходимости. При скорость сходимости называют

Идея метода. Выбирается уравнение, в котором одна из переменных наиболее просто выражается через остальные переменные. Полученное выражение этой переменной подставляется в оставшиеся уравнения системы.

  1. b) Комбинирование с другими методами.

Идея метода . Если метод прямой подстановки не применим на начальном этапе решения, то используются равносильные преобразования систем (почленное сложение, вычитание, умножение, деление), а затем проводят непосредственно прямую подстановку.

2) Метод независимого решения одного из уравнений.

Идея метода . Если в системе содержится уравнение, в котором находятся взаимно обратные выражения, то вводится новая переменная и относительно её решается уравнение. Затем система распадается на несколько более простых систем.

Решить систему уравнений

Рассмотрим первое уравнение системы:

Сделав замену , где t ≠ 0, получаем

Откуда t 1 = 4, t 2 = 1/4.

Возвращаясь к старым переменным, рассмотрим два случая.

Корнями уравнения 4у 2 – 15у – 4 = 0 являются у 1 = 4, у 2 = — 1/4 .

Корнями уравнения 4х 2 + 15х – 4 = 0 являются х 1 = — 4, х 2 = 1/4 .

3)Сведение системы к объединению более простых систем.

  1. a ) Разложение на множители способом вынесения общего множителя.

Идея метода. Если в одном из уравнений есть общий множитель, то это уравнение раскладывают на множители и, учитывая равенство выражения нулю, переходят к решению более простых систем.

  1. b ) Разложение на множители через решение однородного уравнения .

Идея метода. Если одно из уравнений представляет собой однородное уравнение (, то решив его относительно одной из переменных, раскладываем на множители, например: a(x-x 1)(x-x 2) и, учитывая равенство выражения нулю, переходим к решению более простых систем.

Решим первую систему

  1. c ) Использование однородности.

Идея метода. Если в системе есть выражение, представляющее собой произведение переменных величин, то применяя метод алгебраического сложения, получают однородное уравнение, а затем используют метод разложение на множители через решение однородного уравнения.

4) Метод алгебраического сложения.

Идея метода. В одном из уравнений избавляемся от одной из неизвестных, для этого уравниваем модули коэффициентов при одной из переменных, затем производим или почленное сложение уравнений, или вычитание.

5) Метод умножения уравнений.

Идея метода. Если нет таких пар (х;у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить произведением обоих уравнений системы.

Решим второе уравнение системы.

Пусть = t, тогда 4t 3 + t 2 -12t -12 = 0. Применяя следствие из теоремы о корнях многочлена, имеем t 1 = 2.

Р(2) = 4∙2 3 + 2 2 — 12∙2 – 12 = 32 + 4 — 24 — 12 = 0. Понизим степень многочлена, используя метод неопределенных коэффициентов.

4t 3 + t 2 -12t -12 = (t – 2) (at 2 + bt + c).

4t 3 +t 2 -12t -12 = at 3 + bt 2 + ct — 2at 2 -2bt — 2c.

4t 3 + t 2 — 12t -12 = at 3 + (b – 2a) t 2 + (c -2b) t — 2c.

Получаем уравнение 4t 2 + 9t + 6 = 0, которое не имеет корней, так как D = 9 2 — 4∙4∙6 = -15<0.

Возвращаясь к переменной у, имеем = 2, откуда у = 4.

Ответ. (1;4).

6) Метод деления уравнений.

Идея метода. Если нет таких пар (х; у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить уравнением, которое получается при делении одного уравнения системы на другое.

7) Метод введения новых переменных.

Идея метода. Некоторые выражения от исходных переменных принимаются за новые переменные, что приводит к более простой, чем первоначальная, системе от этих переменных. После того как новые переменные будут найдены, нужно найти значения исходных переменных.

Возвращаясь к старым переменным, имеем:

Решаем первую систему.

8) Применение теоремы Виета .

Идея метода. Если система составлена так, одно из уравнений представлено в виде суммы, а второе — в виде произведения некоторых чисел, которые являются корнями некоторого квадратного уравнения, то применяя теорему Виета составляем квадратное уравнение и решаем его.

Ответ. (1;4), (4;1).

Для решения симметричных систем применяется подстановка: х + у = а; ху = в. При решении симметричных систем используются следующие преобразования:

х 2 + у 2 = (х + у) 2 – 2ху = а 2 – 2в; х 3 + у 3 = (х + у)(х 2 – ху + у 2) = а(а 2 -3в);

х 2 у + ху 2 = ху (х + у) = ав; (х +1)∙(у +1) = ху +х +у+1 =а + в +1;

Ответ. (1;1), (1;2), (2;1).

10) «Граничные задачи».

Идея метода. Решение системы получаются путем логических рассуждений, связанных со структурой области определения или множества значений функций, исследование знака дискриминанта квадратного уравнения.

Особенность этой системы в том, что число переменных в ней больше числа уравнений. Для нелинейных систем такая особенность часто является признаком «граничной задачи». Исходя из вида уравнений, попытаемся найти множество значений функции, которая встречается и в первом, и во втором уравнении системы. Так как х 2 + 4 ≥ 4, то из первого уравнения следует, что

Ответ (0;4;4), (0;-4;-4).

11) Графический метод.

Идея метода . Строят графики функций в одной системе координат и находят координаты точек их пересечения.

1) Переписав первое уравнение систем в виде у = х 2 , приходим к выводу: графиком уравнения является парабола.

2) Переписав второе уравнение систем в виде у =2/х 2 , приходим к выводу: графиком уравнения является гипербола.

3) Парабола и гипербола пересекаются в точке А. Точка пересечения только одна, поскольку правая ветвь параболы служит графиком возрастающей функции, а правая ветвь гиперболы — убывающей. Судя по построенной геометрической модели точка А имеет координаты (1;2). Проверка показывает, что пара (1;2) является решением обоих уравнений системы.

Общий вид нелинейного уравнения

f (x )=0, (6.1)

где функция f (x ) – определена и непрерывна в некотором конечном или бесконечном интервале.

По виду функции f (x ) нелинейные уравнения можно разделить на два класса:

Алгебраические;

Трансцендентные.

Алгебраическими называются уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией.

Трансцендентными называются уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и др.)

Решить нелинейное уравнение – значит найти его корни или корень.

Всякое значение аргумента х , обращающее функцию f (x ) в нуль называется корнем уравнения (6.1) или нулем функции f (x ).

6.2. Методы решения

Методы решения нелинейных уравнений делятся на:

Итерационные.

Прямые методы позволяют записать корни в виде некоторого конечного соотношения (формулы). Из школьного курса алгебры известны такие методы для решения квадратного уравнения, биквадратного уравнения (так называемых простейших алгебраических уравнений), а также тригонометрических, логарифмических, показательных уравнений.

Однако, встречающиеся на практике уравнения, не удается решить такими простыми методами, потому что

Вид функции f (x ) может быть достаточно сложным;

Коэффициенты функции f (x ) в некоторых случаях известны лишь приблизительно, поэтому задача о точном определении корней теряет смысл.

В этих случаях для решения нелинейных уравнений используются итерационные методы, то есть методы последовательных приближений. Алгоритм нахождения корня уравнения, следует отметить изолированного , то есть такого, для которого существует окрестность, не содержащая других корней этого уравнения, состоит из двух этапов:

    отделение корня , а именно, определение приближенного значения корня или отрезка, который содержит один и только один корень.

    уточнение приближенного значения корня , то есть доведение его значения до заданной степени точности.

На первом этапе приближенное значение корня (начальное приближение ) может быть найдено различными способами:

Из физических соображений;

Из решения аналогичной задачи;

Из других исходных данных;

Графическим методом.

Более подробно рассмотрим последний способ. Действительный корень уравнения

f(x) =0

приближенно можно определить как абсциссу точки пересечения графика функции у= f (x ) с осью 0х. Если уравнение не имеет близких между собой корней, то этим способом они легко определяются. На практике часто бывает выгодным уравнение (6.1) заменить равносильным

f 1 (x)=f 2 (x)

где f 1 (x ) и f 2 (x ) – более простые, чем f (x ) . Тогда, построив графики функций f 1 (x ) и f 2 (x ), искомый корень (корни) получим как абсциссу точки пересечения этих графиков.

Отметим, что графический метод, при всей своей простоте, как правило, применим лишь для грубого определения корней. Особенно неблагоприятным, в смысле потери точности является случай, когда линии пересекаются под очень острым углом и практически сливаются по некоторой дуге.

Если такие априорные оценки исходного приближения провести не удается, то находят две близко расположенные точки a , b , между которыми функция имеет один и только один корень. Для этого действия полезно помнить две теоремы.

Теорема 1. Если непрерывная функция f (x ) принимает значения разных знаков на концах отрезка [a , b ], то есть

f (a ) f (b )<0, (6.2)

то внутри этого отрезка находится, по меньшей мере, один корень уравнения.

Теорема 2. Корень уравнения на отрезке [a , b ] будет единственным, если первая производная функции f ’(x ), существует и сохраняет постоянный знак внутри отрезка, то есть

(6.3)

Выбор отрезка [a , b ] выполняется

Графически;

Аналитически (путем исследования функции f (x ) или путем подбора).

На втором этапе находят последовательность приближенных значений корня х 1 , х 2 , … , х n . Каждый шаг вычисления x i называется итерацией . Если x i с увеличением n приближаются к истинному значению корня, то говорят, что итерационный процесс сходится.

Математика как наука возникла в связи с необходимостью решения практических задач: измерений на местности, навигации и т.д. Вследствие этого математика была численной математикой и ее целью было получение решения в виде числа. Численное решение прикладных задач всегда интересовало математиков. Крупнейшие представители прошлого сочетали в своих исследованиях изучение явлений природы, получение их математического описания, т.е. его математической модели и его исследование. Анализ усложненных моделей потребовал создания специальных, обычно численных методов решения задач. Названия некоторых таких методов свидетельствуют о том, что их разработкой занимались крупнейшие ученые своего времени. Это методы Ньютона, Эйлера, Лобачевского, Гаусса, Чебышева, Эрмита.

Настоящее время характерно резким расширением приложений математики, во многом связанным с созданием и развитием средств вычислительной техники. В результате появления ЭВМ менее чем за 40 лет скорость выполнения операций возросла от 0,1 операции в секунду при ручном счете до 10 операций в секунду на современных ЭВМ.

Распространенное мнение о всемогуществе современных ЭВМ порождает впечатление, что математики избавились от всех хлопот, связанных с численным решением задач, и разработка новых методов для их решения уже не столь существенна. В действительности дело обстоит иначе, поскольку потребности эволюции ставят, как правило, перед наукой задачи, находящиеся на грани ее возможностей. Расширение возможностей приложения математики обусловило математизацию различных разделов науки: химии, экономики, биологии, геологии, географии, психологии, медицины, техники и др.

Можно выделить два обстоятельства, которые первоначально обусловили стремление к математизации наук:

во-первых, только применение математических методов позволяет придать количественный характер исследованию того или иного явления материального мира;

во-вторых, и это главное, только математический способ мышления делает объекта. Такой метод исследования называют вычислительным экспериментом исследование в полной мере объективным.

В последнее время появился еще фактор, оказывающий сильное воздействие на процессы математизации знаний. Это быстрое развитие средств вычислительной техники. Применение ЭВМ для решения научных, инженерных и вообще прикладных задач целиком базируется на их математизации.

Математические модели.

Современная технология исследования сложных проблем основана на построении и анализе, обычно с помощью ЭВМ, математических моделей изучаемого. Обычно вычислительный эксперимент, как мы уже видели, состоит из ряда этапов: постановка задачи, построение математической модели (математическая формулировка задачи), разработка численного метода разработка алгоритма реализации численного метода, разработка программы, отладка программы, проведение расчетов, анализ результатов.

Итак, применение ЭВМ для решения любой научной или инженерной задачи неизбежно связано с переходом от реального процесса или явления к его математической модели. Таким образом, применение моделей в научных исследованиях и инженерной практике есть искусство математического моделирования.

Моделью обычно называют представляемую или материально реализуемую систему, воспроизводящую основные наиболее существенные черты данного явления.

Основные требования, предъявляемые к математической модели - адекватность рассматриваемому явлению, т.е. оно должно достаточно отражать характерные черты явления. Вместе с тем она должна обладать сравнительной простотой и доступностью исследования.

Математическая модель отражает зависимость между условиями протекания изучаемого явления и его результатами в тех или иных математических конструкциях. Чаще всего в качестве таких конструкций используются следующие математические понятия: функция, функционал, оператор, числовое уравнение, обыкновенное дифференциальное уравнение, дифференциальное уравнение в частных производных.

Математические модели можно классифицировать по разным признакам: статические и динамические, сосредоточенные и распределенные; детерминированные и вероятностные.

Рассмотрим задачу нахождения корней нелинейного уравнения

Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.

Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область , в которой существует корень уравнения или начальное приближение к корню x 0 . Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.

Существование на найденном отрезке , по крайней мере, одного корня уравнения (1) следует из условия Больцано:

f(a)*f(b)<0 (2)

При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке . Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной, то можно утверждать о существовании единственного корня на заданном отрезке.

При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:

где вещественные коэффициенты.

  • а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.
  • б) Число положительных вещественных корней меньше или равно числа переменных знаков в последовательности коэффициентов. Замена х на -х в уравнении (3) позволяет таким же способом оценить число отрицательных корней.

На втором этапе решения уравнения (1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью. Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения. Если эта последовательность с ростом n приближается к истинному значению корня x , то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие:

где С>0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.

Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

или малости невязки:

Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.

Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:

  • 1)Метод итераций . При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x 0 и точность е. Первое приближение решения x 1 находим из выражения x 1 =f(x 0), второе - x 2 =f(x 1) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>е. Условие сходимости метода итераций |f"(x)|
  • 2)Метод Ньютона . При решении нелинейного уравнения методом Ньтона задаются начальное значение аргумента x 0 и точность е. Затем в точке(x 0 ,F(x 0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x 1 . В точке (x 1 ,F(x 1)) снова строим касательную, находим следующее приближение искомого решения x 2 и т.д. Указанную процедуру повторяем пока |F(xi)| > е. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой

x i+1 =x i -F(x i) F"(x i).

Условие сходимости метода касательных F(x 0) F""(x)>0, и др.

3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле

С к =а к +в к /2.

Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (а к)* f (в к)<0.

Процесс деления отрезка проводится до тех пор, пока длина текущего интервала неопределённости не будет меньше заданной точности, то есть в к - а к < E. Тогда в качестве приближенного решения уравнения будет точка, соответствующая середине интервала неопределённости.

4). Метод хорд . Идея метода состоит в том, что на отрезке строится хорда стягивающая концы дуги графика функции y=f(x), а точка c, пересечения хорды с осью абсцисс, считается приближенным значением корня

c = a - (f(a)Ч (a-b)) / (f(a) - f(b)),

c = b - (f(b)Ч (a-b)) / (f(a) - f(b)).

Следующее приближение ищется на интервале или в зависимости от знаков значений функции в точках a,b,c

x* О , если f(с)Ч f(а) > 0 ;

x* О , если f(c)Ч f(b) < 0 .

Если f"(x) не меняет знак на , то обозначая c=x 1 и считая начальным приближением a или b получим итерационные формулы метода хорд с закрепленной правой или левой точкой.

x 0 =a, x i+1 = x i - f(x i)(b-x i) / (f(b)-f(x i), при f "(x)Ч f "(x) > 0 ;

x 0 =b, x i+1 = x i - f(x i)(x i -a) / (f(x i)-f(a), при f "(x)Ч f "(x) < 0 .

Сходимость метода хорд линейная

Алгебраические и трансцендентные уравнения. Методы локализации корней.

Наиболее общий вид нелинейного уравнения:

f(x) =0 (2.1)

где функция f(x) определена и непрерывна на конечном или бесконечном интервале [а, b].

Определение 2.1. Всякое число, обращающее функцию f(x) в нуль, называется корнем уравнения (2.1).

Определение 2.2. Число, называется корнем k-ой кратности, если при вместе с функцией f(x) равны нулю ее производные до (к-1)-го порядка включительно:

Определение 2.3. Однократный корень называется простым.

Нелинейные уравнения с одной переменной подразделяются на алгебраические и трансцендентные.

Определение 2.4 . Уравнение (2.1) называется алгебраическим, если функция F(x) является алгебраической.

Путем алгебраических преобразований из всякого алгебраического уравнения можно получить уравнение в канонической форме:

где -- действительные коэффициенты уравнения, х -- неизвестное.

Из алгебры известно, что всякое алгебраическое уравнение имеет, по крайней мере, один вещественный или два комплексно сопряженных корня.

Определение 2.5. Уравнение (2.1) называется трансцендентным, если функция F(x) не является алгебраической.

Решить уравнение (2.1) означает:

  • 1. Установить имеет ли уравнение корни.
  • 2. Определить число корней уравнения.
  • 3. Найти значения корней уравнения с заданной точностью.

Встречающиеся на практике уравнения часто не удается решить аналитическими методами. Для решения таких уравнений используются численные методы.

Алгоритм нахождения корня уравнения с помощью численного метода состоит из двух этапов:

  • 1) отделение или локализация корня, т.е. установление промежутка , в котором содержится один корень:
  • 2) уточнение значения корня методом последовательных приближений.

Методы локализации корней. Теоретической основой алгоритма отделения корней служит теорема Коши о промежуточных значениях непрерывной функции.

Теорема 2.1. Если функция у = f(х) непрерывна на отрезке [а,b] и f(а)=А, f(b)=В, то для любой точки С, лежащей между А и В, существует точка, что.

Следствие. Если функция у = f(х) непрерывна на отрезке [а,b ] и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы один корень уравнения f(х) = 0.

Пусть область определения и непрерывности функции является конечным отрезком [а,b] . Разделим отрезок на n частей: ,

Вычисляя последовательно значения функции в точках находим такие отрезки, для которых выполняется условие:

т.е. , или, . Эти отрезки и содержит хотя бы по одному корню.

Теорема 2.2. Если функция у = f(х) непрерывна на отрезке [а;b ], f(а)f(b)<0 и f`(х) на интервале (а;b) сохраняет знак, то внутри отрезка [а;b] существует единственный корень уравнения f(х) = 0.

Для отделения корней можно использовать также график функции у = f(х). Корнями уравнения (2.1) являются те значения х, при которых график функции y=f(х) пересекает ось абсцисс. Построение графика функции даже с малой точностью обычно дает представление о расположении корней уравнения (2.1). Если построение графика функции у=f(x) вызывает затруднение, то исходное уравнение (2.1) следует преобразовать к виду ц1(х) = ц2(х) таким образом, чтобы графики функций у = ц1(х) и у = ц2(х) были достаточно просты. Абсциссы точек пересечения этих графиков и будут корнями уравнения (2.1).

Пример 1. Отделить корни уравнения x 2 -2cosx=0.

Решение. Рассмотрим два способа отделения корней.

  • а) Графический способ. Перепишем уравнение в виде x 2 =2cosx и построим график функций y=x 2 и y=2cosx в одной и той же системе координат (рисунок 5). так как эти графики пересекаются в двух точках, уравнение имеет два корня, расположенные симметрично относительно начала координат на интервалах (-/2; 0) и (0; /2).
  • б) Аналитический способ. Пусть f(x)= x 2 -2cosx. Так как f(x) четная функция, то достаточно рассмотреть только неотрицательные значения x. В силу неравенства 2cosx2

Производная f"(x) =2(x+sinx). На интервале (0; /2) f"(x) >0 , следовательно, f(x) здесь монотонно возрастает и ее график может пересечь ось х не более, чем в одной точке. Заметим, что f(0)=- 2<0, а f(/2)=(/2) 2 >0. Значит, уравнение имеет один положительный корень, лежащий на интервале (0; /2). В силу четности функции уравнение имеет также один отрицательный корень, симметричный положительному. Теперь перейдем к уточнению корня. Для применения комбинированного метода уточнения корня необходимо убедится, что f ""(x) на (0; /2) сохраняет знак, и выбрать начальное приближение корня для применения метода касательных. Оно должно удовлетворять условию: f(x)f ""(x) >0. Так как f ""(x) =2(1+cosx) положительна на , то за начальное приближение корня в методе касательных может быть взято /2. Следовательно, можно положить x =/21,570796, x 1 =0 (см схему алгоритма). В нашем случае метод хорд будет давать приближенное значение корня с недостатком, а метод касательных - с избытком.

Рассмотрим один итерационный шаг уточнения корня. Вычислим значения f(0), f(/2), f"(/2). Новые значения x 1 и x найдем соответственно по формулам:

|x-x 1 |=0,387680,4>10 -4 =.

Заданная точность не достигнута, и вычисления нужно продолжить.

Номер итерации

x 1

f(x 1 )

|x- x 1 |

Следовательно, приближенное значение корня с нужной точностью найдено в результате трех итераций и приближенно равно 1,0217.

В силу симметрии графика функции f(x) значение второго корня приближенно равно -1,0217.

Уточнение корня.

Постановка задачи . Допустим, что искомый корень уравнения (2.1) отделен, т.е. найден отрезок [а; b], на котором имеется один и только один корень уравнения. Любую точку этого отрезка можно принять за приближенное значение корня. Погрешность такого приближения не превосходит длины [а; b]. Следовательно, задача отыскания приближенного значения корня с заданной точностью сводится к нахождению отрезка [а; b] (b- a <), содержащего только один корень уравнения (2.1). Эту задачу обычно называют задачей уточнения корня.

Описание численных методов. Численные методы позволяют найти решения определенных задач, заранее зная, что полученные результаты будут вычислены с определенной погрешностью, поэтому для многих численных методов необходимо заранее знать «уровень точности», которому будет соответствовать полученное решение.

В этой связи задача нахождения корней многочлена вида (3.1)

представляет особый интерес, т.к. формулы нахождения корней даже кубического уравнения достаточно сложны. Если необходимо отыскать корни многочлена, степень которого равна, например, 5 - то без помощи численных методов не обойтись, тем более, что вероятность наличия у такого многочлена натуральных (или целых, или точных корней с «короткой» дробной частью) довольно мала, а формул для нахождения корней уравнения степени, превышающей 4, не существует. Де-факто все дальнейшие операции будут сводиться лишь к уточнению корней , интервалы которых приблизительно известны заранее. Проще всего эти «приблизительные» корни находить, используя графические методы.

Для нахождения корней многочлена существует несколько численных методов: метод итераций, метод хорд и касательных, метод половинного деления, метод секущих.

Метод бисекций (известный еще и как «метод деления отрезка пополам») также является рекурсивным, т.е. предусматривает повторение с учетом полученных результатов.

Суть метода половинного деления заключается в следующем:

  • - дана функция F(x);
  • - определена допустимая погрешность Q;
  • - определен некоторый интервал [ a , b ], точно содержащий решение уравнения.

1) Вычисляем значение координаты Е, беря середину отрезка , т.е.

Е= (a + b) / 2 (3.2)

  • 2) Вычисляем значения F(a), F(b), F(E), и осуществляем следующую проверку: Если F(E)>Q, то корень с указанной точностью найден. Если F(E)
  • 3) Переходим к пункту 1.

Метод простых итераций (метод последовательных приближений). Заменим уравнение (2.1) эквивалентным ему уравнением

x=(x) (3.3)

можно сделать различными способами, например

х=х+сf(x), c0. (3.4)

Предположим, что выбрано некоторое начальное приближение корня уравнения (3.3). Определим числовую последовательность по формулам

х n+1 =(x n ), n=0,1,2,… (3.5)

Такую последовательность называют итерационной.

Если на отрезке , содержащем х 0 и все последующие приближения х n , nN, функция (x) имеет непрерывную производную "(x) и |"(x)|q<1, то итерационная последовательность (3.5) сходится к единственному на корню уравнения (3.3). Скорость сходимости определяется неравенством

Из этого неравенства, в частности, следует, что скорость сходимости метода простой итерации зависит от величины q: чем меньше q, тем быстрее сходимость.

Следовательно, на практике при нахождении корней методом простой итерации желательно представить уравнение (2.1) в форме (3.3) таким образом, чтобы производная "(x) в окрестности корня по абсолютной величине была, возможно, меньше. Для этого иногда пользуются параметром с из формулы (3.4).

Метод Ньютона (метод касательных). Если известно достаточно хорошее начальное приближение, для которого выполняется неравенство:

то можно вычислить единственный корень уравнения, используя формулу Ньютона

В качестве начального приближения можно использовать границы интервала, причем:

Если на.

На каждой итерации, данного метода, объем вычислений больше чем в методах биссекций и итераций, поскольку приходится находить не только значение функции, но и ее производной. Однако скорость сходимости метода Ньютона значительно выше.

Теорема. Пусть -корень уравнения, т.е. , а и непрерывна. Тогда существует окрестность корня такая, что если начальное приближение принадлежит этой окрестности, то для метода Ньютона последовательность значений сходится к при. Погрешность -го приближения корня можно оценить по формуле:

где - наибольшее значение модуля второй производной на отрезке, - наименьшее значение модуля первой производной на отрезке.

Правило останова:

Метод хорд и касательных (комбинированный). Данный метод основан на построении схематического графика функции, определении интервалов его пересечения с осью абсцисс и последующим «сжатием» этого интервала при помощи строимых хорд и касательных к графику этой функции.

Надо отметить, что существуют также отдельно метод хорд (дает значение корня с недостатком) и метод касательных (с избытком). Однако преимущество комбинированного метода заключается в «двустороннем сжатии» рассматриваемого отрезка.

Рассмотрим следующий случай:

  • - дана функция F(x) и построен ее график;
  • - определена допустимая погрешность Q
  • - на основании графика определен отрезок , на котором график функции пересекает ось абсцисс, следовательно, на этом отрезке существует корень рассматриваемого многочлена (обозначим его через A)

Дальнейший алгоритм сводится к следующим действиям:

  • 1) строим касательную к графику функции в точке F(b)
  • 2) вычисляем координату х пересечения касательной с осью абсцисс по формуле (3.9) и обозначаем ее через b"
  • 3) строим к графику функции хорду, проходящую через точки F(a) и F(b).
  • 4) Вычисляем точку пересечения хорды с осью абсцисс по формуле (2) и обозначаем ее через a".

Таким образом мы получаем новый отрезок , который (по определениям хорды и касательной) по прежнему содержит решение уравнения A.

Теперь принимаем отрезок за новый отрезок и повторяем шаги 1-4 до тех пор, пока разность F(b)-F(a) не станет меньше первоначально заложенной погрешности Q. Отметим также, что после этого рекомендуется в качестве искомого решения взять среднее арифметическое F(a) и F(b).

Таким образом, если хорда (касательная) дает значение корня с избытком, то этот корень берется в качестве новой правой границы, а если с недостатком - то левой. В обоих случаях точный корень лежит между точками пересечения хорды и касательной с осью абсцисс.

Замечание к методу хорд и касательных. Так как для решения поставленной задачи требуется отыскание производной функции F(x), метод хорд и касательных достаточно трудно реализуем на программном уровне, т.к. правила вычисления производных в общем виде довольно громоздки для «понимания» ЭВМ; при непосредственном указании производной для каждой степени многочлена память компьютера серьезно загружается, что очень замедляет работу, а задание функции и, соответственно, ее производной непосредственно в программном коде - недопустимо. Однако, используя данный метод, сходимость интервала к корню происходит наиболее быстро, особенно если совместить метод хорд и касательных с методом бисекции, т.к. середина нового отрезка зачастую дает вполне удовлетворительное решение.

Метод секущих. Метод секущих может быть получен из метода Ньютона при замене производной приближенным выражением - разностной формулой:

В формуле (3.8) используются два предыдущих приближения и. Поэтому при заданном начальном значении необходимо вычислить следующее приближение, например, методом Ньютона с приближенной заменой производной по формуле

Алгоритм метода секущих:

1) заданы начальное значение и погрешность. Вычислим

2) для n = 1,2, ….. пока выполняется условие, вычисляем по формуле (3.8).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Реферат на тему: «Решение нелинейных уравнений

методом простых итераций»

Выполнил:. Бубеев Б.М.

Проверил: Ширапов Д.Ш.

Введение

Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и другие) называются трансцендентными.

Методы решения нелинейных уравнений делятся на две группы:

    точные методы ;

    итерационные методы .

Точные методы позволяют записать корни в виде некоторого конечного соотношения (формулы). Из школьного курса алгебры известны такие методы для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.

Как известно, многие уравнения и системы уравнений не имеют аналитических решений. В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение степени выше четвертой. Кроме того, в некоторых случаях уравнение содержит коэффициенты, известные лишь приблизительно, и, следовательно, сама задача о точном определении корней уравнения теряет смысл. Для их решения используются итерационные методы с заданной степенью точности.

Пусть дано уравнение

    Функция f (x ) непрерывна на отрезке [a, b ] вместе со своими производными 1-го и 2-го порядка.

    Значения f (x ) на концах отрезка имеют разные знаки (f (a )  f (b ) < 0).

    Первая и вторая производные f" (x ) и f"" (x ) сохраняют определенный знак на всем отрезке.

Условия 1) и 2) гарантируют, что на интервале [a, b ] находится хотя бы один корень, а из 3) следует, что f (x ) на данном интервале монотонна и поэтому корень будет единственным.

Решить уравнение (1) итерационным методом значит установить, имеет ли оно корни, сколько корней и найти значения корней с нужной точностью.

Всякое значение , обращающее функцию f (x ) в нуль, т.е. такое, что:

называется корнем уравнения (1) или нулем функции f (x ).

Задача нахождения корня уравнения f (x ) = 0 итерационным методом состоит из двух этапов:

    отделение корней - отыскание приближенного значения корня или содержащего его отрезка;

    уточнение приближенных корней - доведение их до заданной степени точности.

Процесс отделения корней начинается с установления знаков функции f (x ) в граничных x = a и x = b точках области ее существования.

Пример 1 . Отделить корни уравнения:

Следовательно, уравнение (2) имеет три действительных корня, лежащих в интервалах [-3, -1], и .

Приближенные значения корней (начальные приближения ) могут быть также известны из физического смысла задачи, из решения аналогичной задачи при других исходных данных, или могут быть найдены графическим способом.

В инженерной практике распространен графический способ определения приближенных корней.

Принимая во внимание, что действительные корни уравнения (1) - это точки пересечения графика функции f (x ) с осью абсцисс, достаточно построить график функции f (x ) и отметить точки пересечения f (x ) с осью Ох, или отметить на оси Ох отрезки, содержащие по одному корню. Построение графиков часто удается сильно упростить, заменив уравнение (1) равносильным ему уравнением:

где функции f 1 (x ) и f 2 (x ) - более простые, чем функция f (x ). Тогда, построив графики функций у = f 1 (x ) и у = f 2 (x ), искомые корни получим как абсциссы точек пересечения этих графиков.

Рисунок 2.

Пример 2 . Графически отделить корни уравнения (Рисунок 2):

x lg x = 1.

Уравнение (4) удобно переписать в виде равенства:

Отсюда ясно, что корни уравнения (4) могут быть найдены как абсциссы точек пересечения логарифмической кривой y = lg x и гиперболы y = . Построив эти кривые, приближенно найдем единственный корень уравнения (4) или определим его содержащий отрезок .

Итерационный процесс состоит в последовательном уточнении начального приближения х 0 . Каждый такой шаг называется итерацией . В результате итераций находится последовательность приближенных значений корня х 1 , х 2 , ..., х n . Если эти значения с увеличением числа итераций n приближаются к истинному значению корня, то говорят, что итерационный процесс сходится .

Метод простой итерации

Для использования метода итерации исходное нелинейное уравнение f (х ) = 0 заменяется равносильным уравнением

Геометрически метод итерации может быть пояснен следующим образом. Построим на плоскости хОу графики функций у = х и у = (х ). Каждый действительный корень уравнения (8) является абсциссой точки пересечения М кривой у = (х ) с прямой у = х (Рисунок 6, а ).

Рисунок 6.

Отправляясь от некоторой точки А 0 [x 0 , (x 0)], строим ломаную А 0 В 1 А 1 В 2 А 2 ... (“лестница”), звенья которой попеременно параллельны оси Ох и оси Оу , вершины А 0 , А 1 , А 2 , ... лежат на кривой у= (х ), а вершины В 1 , В 2 , В 3 , …, - на прямой у = х. Общие абсциссы точек А 1 и В 1 , А 2 и В 2 , ..., очевидно, представляют собой соответственно последовательные приближения х 1 , х 2 , ... корня .

Возможен также другой вид ломаной А 0 В 1 А 1 В 2 А 2 ... - “спираль” (Рисунок 6, б ). Решение в виде “лестницы” получается, если производная " (х ) положительна, а решение в виде “спирали”, если " (х ) отрицательна.

На Рисунке 6, а, б кривая у =  (х ) в окрестности корня - пологая, то есть <1, и процесс итерации сходится. Однако, если рассмотреть случай, где >1, то процесс итерации может быть расходящимся (Рисунок 7).

Рисунок 7.

Поэтому для практического применения метода итерации нужно выяснить достаточные условия сходимости итерационного процесса.

Теорема: Пусть функция  (х ) определена и дифференцируема на отрезке [a, b ], причем все ее значения  (х ) [a , b ].

Тогда, если существует правильная дробь q такая, что

при a < x < b, то: 1) процесс итерации

сходится независимо от начального значени я х 0  [a , b ];

2) предельное значение является единственным корнем уравнения х = (х ) на отрезке [a, b ].

Пример 5 . Уравнение

f (x ) x 3 - x - 1 = 0

имеет корень , так как f (1) = - 1 < 0 и f (2) = 5 > 0.

Уравнение (10) можно записать в виде

х = х 3 - 1.

 (х ) = х 3 - 1 и " (х ) = 3х 2 ;

" (х ) 3 при 1 х 2

и, следовательно, условия сходимости процесса итерации не выполнены.

Если записать уравнение (10) в виде

то будем иметь:

.

Отсюда при 1 х 2 и значит, процесс итерации для уравнения (12) быстро сойдется. уравнений методом деления отрезка пополам... в памяти в форме простых переменных. Результат этой... итерация ) типа Real; d – дискриминант типа Real; x1 –первый корень уравнения , найденный методом решения квадратных уравнений ...

  • Метод Ньютона для решения нелинейных уравнений

    Курсовая работа >> Информатика

    ... методов решения нелинейных уравнений Существует много различных методов решения нелинейных уравнений , некоторые из них представлены ниже: 1)Метод итераций . При решении нелинейного уравнения методом итераций ... формулу метода простой итерации xk+1=g(...

  • Решение нелинейных уравнений методом интераций

    Контрольная работа >> Информатика

    Описывающая правила вычисления коней нелинейного уравнения методом итераций , а также блок-схема метода . 2 Практическая реализация: ... вычисление корней уравнения методом итераций 2.4 Вычислительный эксперимент – сравнение результатов программы с решением в...