Как решать магические квадраты? Четные магические квадраты 9 клеток в сумме 12.

Существуют различные методики для построения квадратов порядка одинарной четности и двойной четности.

  • Вычислите магическую константу. Это можно сделать при помощи простой математической формулы / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 6x6 n=6, а его магическая константа:

    • Магическая константа = / 2
    • Магическая константа = / 2
    • Магическая константа = (6 * 37) / 2
    • Магическая константа = 222/2
    • Магическая константа квадрата 6х6 равна 111.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  • Разделите магический квадрат на четыре квадранта одинакового размера. Обозначьте квадранты через А (сверху слева), C (сверху справа), D (снизу слева) и B (снизу справа). Чтобы выяснить размер каждого квадранта, разделите n на 2.

    • Таким образом, в квадрате 6х6 размер каждого квадранта равен 3x3.
  • В квадранте А напишите четвертую часть всех чисел; в квадранте В напишите следующую четвертую часть всех чисел; в квадранте С напишите следующую четвертую часть всех чисел; в квадранте D напишите заключительную четвертую часть всех чисел.

    • В нашем примере квадрата 6х6 в квадранте А напишите числа 1-9; в квадранте В - числа 10-18; в квадранте С - числа 19-27; в квадранте D - числа 28-36.
  • Числа в каждом квадранте записывайте так, как вы строили нечетный квадрат. В нашем примере квадрант А начните заполнять числами с 1, а квадранты С, B, D - с 10, 19, 28, соответственно.

    • Число, с которого вы начинаете заполнение каждого квадранта, всегда пишите в центральной ячейке верхней строки определенного квадранта.
    • Заполняйте каждый квадрант числами так, как будто это отдельный магический квадрат. Если при заполнении квадранта доступна пустая ячейка из другого квадранта, игнорируйте этот факт и пользуйтесь исключениями из правила заполнения нечетных квадратов.
  • Выделите определенные числа в квадрантах А и D. На данном этапе сумма чисел в столбцах, строках и по диагонали не будет равна магической константе. Поэтому вы должны поменять местами числа в определенных ячейках верхнего левого и нижнего левого квадрантов.

    • Начиная с первой ячейки верхней строки квадранта А, выделите количество ячеек, равное медиане количества ячеек во всей строке. Таким образом, в квадрате 6x6 выделите только первую ячейку верхней строки квадранта А (в этой ячейке написано число 8); в квадрате 10х10 вам нужно выделить первые две ячейки верхней строки квадранта А (в этих ячейках написаны числа 17 и 24).
    • Образуйте промежуточный квадрат из выделенных ячеек. Так как в квадрате 6х6 вы выделили только одну ячейку, то промежуточный квадрат будет состоять из одной ячейки. Назовем этот промежуточный квадрат как A-1.
    • В квадрате 10х10 вы выделили две ячейки верхней строки, поэтому необходимо выделить две первые ячейки второй строки, чтобы образовать промежуточный квадрат 2х2, состоящий из четырех ячеек.
    • В следующей строке пропустите число в первой ячейке, а затем выделите столько чисел, сколько вы выделили в промежуточном квадрате A-1. Полученный промежуточный квадрат назовем A-2.
    • Получение промежуточного квадрата А-3 аналогично получению промежуточного квадрата A-1.
    • Промежуточные квадраты А-1, А-2, А-3 образуют выделенную область А.
    • Повторите описанный процесс в квадранте D: создайте промежуточные квадраты, которые образуют выделенную область D.
  • МАГИЧЕСКИЙ КВАДРАТ
    квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу. Магический квадрат - древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы (рис. 1,а), и эти знаки известны под названием ло-шу и равносильны магическому квадрату, изображенному на рис. 1,б. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А. Дюрера (рис. 2), изображенный на его знаменитой гравюре Меланхолия 1. Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5-го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.



    В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления. Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n2 клеток и называется квадратом n-го порядка. В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n(n2 + 1)/2. Доказано, что n і 3. Для квадрата 3-го порядка S = 15, 4-го порядка - S = 34, 5-го порядка - S = 65. Две диагонали, проходящие через центр квадрата, называются главными диагоналями. Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края (такую диагональ образуют заштрихованные клетки на рис. 3). Клетки, симметричные относительно центра квадрата, называются кососимметричными. Таковы, например, клетки a и b на рис. 3.



    Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы, некоторые из которых мы рассмотрим ниже. Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де ла Лубера. Рассмотрим этот метод на примере квадрата 5-го порядка (рис. 4). Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.



    Метод Ф. де ла Ира (1640-1718) основан на двух первоначальных квадратах. На рис. 5 показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. 5,б). Поклеточная сумма этих двух квадратов (рис. 5,в) образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.



    Если известен способ построения квадратов порядка m и порядка n, то можно построить квадрат порядка mґn. Суть этого способа показана на рис. 6. Здесь m = 3 и n = 3. Более крупный квадрат 3-го порядка (с числами, помеченными штрихами) строится методом де ла Лубера. В клетку с числом 1ў (центральную клетку верхнего ряда) вписывается квадрат 3-го порядка из чисел от 1 до 9, также построенный методом де ла Лубера. В клетку с числом 2ў (правую в нижней строке) вписывается квадрат 3-го порядка с числами от 10 до 18; в клетку с числом 3ў - квадрат из чисел от 19 до 27 и т.д. В результате мы получим квадрат 9-го порядка. Такие квадраты называются составными.



    Энциклопедия Кольера. - Открытое общество . 2000 .

    Смотреть что такое "МАГИЧЕСКИЙ КВАДРАТ" в других словарях:

      Квадрат, разделенный на равное число n столбцов и строк, со вписанными в полученные клетки первыми n2 натуральными числами, которые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число … Большой Энциклопедический словарь

      МАГИЧЕСКИЙ КВАДРАТ, квадратная МАТРИЦА, разделенная на клетки и заполненная числами или буквами определенным образом, фиксирующим особую магическую ситуацию. Самый распространенный квадрат с буквами это SATOR, составленный из слов SATOR, AREPO,… … Научно-технический энциклопедический словарь

      Квадрат, разделённый на равное число п столбцов и строк, со вписанными в полученные клетки натуральными числами от 1 до п2, к рые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число. На рис. пример М. к. с… … Естествознание. Энциклопедический словарь

      Магический, или волшебный квадрат это квадратная таблица, заполненная числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Если в квадрате равны суммы чисел только в строках и столбцах, то … Википедия

      Квадрат, разделённый на равное число n столбцов и строк, со вписанными в полученные клетки первыми n2 натуральными числами, которые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число. На рисунке пример… … Энциклопедический словарь

      Квадрат, разделённый на равное число n столбцов и строк, со вписанными в полученные клетки первыми n2 натуральными числами, которые дают в сумме по каждому столбцу, каждой строке и двум большим диагоналям одно и то же число [равное, как… … Большая советская энциклопедия

      Квадратная таблица целых чисел от 1 до n2, удовлетворяющая следующим условиям: где s=n(n2+1)/2. Рассматриваются также более общие М. к., в к рых не требуется, чтобы Любое число а, однозначно характеризуется парой вычетов (a, b)по модулю п(цифрами … Математическая энциклопедия

      Книжн. Квадрат, разделённый на части, в каждую из которых вписана цифра, дающая в сумме вместе с другими по горизонтали, вертикали или диагонали одно и то же число. БТС, 512 … Большой словарь русских поговорок

      - (греч. magikos, от magos маг). Волшебный, к магии относящийся. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАГИЧЕСКИЙ волшебный. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

      Является трёхмерной версией магического квадрата. Традиционным (классическим) магическим кубом порядка n называется куб размерами n×n×n, заполненный различными натуральными числами от 1 до n3 так, что суммы чисел в любом из 3n2 рядов,… … Википедия

    Книги

    • Магический квадрат , Ирина Бйорно , «Магический Квадрат» – сборник повестей и рассказов, написанных в стиле магического реализма, где действительность тесно переплетается с магией и фантазией, образуя новый, магический стиль –… Категория: Ужасы и Мистика Издатель: Издательские решения , электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

    Муниципальное общеобразовательное учреждение «Гимназия №41»

    Магические квадраты

    Руководитель: ,

    учитель математики

    г. Новоуральск, 2012 год.

    Введение 3

    1. Общие сведения о магических квадратах 4

    1.1. Понятие магического квадрата 4

    1.2. Из истории магических квадратов 4

    1.3. Виды магических квадратов 6

    2. Решение магических квадратов 6

    2.1. Решение магических квадратов (метод Баше де Мезирака) 7

    2.2. Постановка задачи 8

    2.3. Алгоритм решения магических квадратов 8

    2.4. Доказательство алгоритма (в алгебраической форме) 9

    2.5. Пример решения магического квадрата по алгоритму 10

    3. Использование магических квадратов 11

    3.1. Разные случаи обобщения магических квадратов 11

    3.2. Применение латинских квадратов 12

    4. Общие выводы 13

    5. Заключение 14

    6. Список литературы 15

    Приложение 1

    Приложение 2

    Приложение 3

    Введение

    На занятиях математического кружка мы столкнулись с задачами, связанными с заполнением клеток квадрата по особым правилам. Предложенные числа надо было вписать так, чтобы результат удовлетворял сразу нескольким условиям:

    Если сложить все числа в каждой строке,

    Если сложить все числа в каждом столбце,

    Если сложить все числа в двух диагоналях,

    то все эти суммы окажутся равными одному и тому же числу.

    Несмотря на то, что задачи отличались исходными числами, порядком чисел, заданностью суммы, все они были подобными, а решения – однотипными.

    Возникла идея не просто решить каждое задание, но и придумать общий алгоритм решения, а также найти в литературе исторические сведения о задачах подобного типа.

    Выяснилось, что интересующие нас фигуры называются магическими квадратами, известными с древних времён. О них и пойдёт речь в работе.

    Цель работы: систематизировать сведения о магических квадратах, разработать алгоритм их решения.

    Задачи :

    1. Изучить историю возникновения магических квадратов.

    2. Выявить виды магических квадратов.

    3. Узнать способы решения магических квадратов.

    4. Разработать и доказать свой алгоритм решения.

    5. Определить применение магических квадратов.

    1.Общие сведения о магических квадратах

    1.1. Понятие магического квадрата

    Большой популярностью даже в наши дни пользуются магические квадраты. Это квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны. Самым известным считается магический квадрат, изображённый на гравюре немецкого художника А. Дюрера «Меланхолия» (приложение 1).

    1.2. Из истории магических квадратов

    Числа настолько вошли в жизнь человека, что им стали приписывать всякие магические свойства. Уже несколько тысяч лет назад в Древнем Китае увлеклись составлением магических квадратов. При археологических раскопках в Китае и Индии были найдены квадратные амулеты. Квадрат был разделён на девять маленьких квадратиков, в каждом из которых были написаны числа от 1 до 9. Замечательно, что суммы всех чисел в любой вертикали, горизонтали и диагонали были равны одному и тому же числу 15 (рисунок 1).

    Рисунок 1.

    В средние века магические квадраты были очень популярны. Один из магических квадратов изображен на гравюре знаменитого немецкого художника Альбрехта Дюрера, «Меланхолия». В 16 клетках квадрата размещены цифры от 1 до 16, а сумма чисел по всем направлениям равна 34. Любопытно, что два числа в середине нижней строки указывают на год создания картины – 1514 г. Получение магических квадратов было популярным развлечением среди математиков, создавались огромные квадраты, например, 43x43, содержащий числа от 1 до 1849, причём обладающие помимо указанных свойств магических квадратов, ещё и многими дополнительными свойствами. Были придуманы способы построения магических квадратов любого размера, однако до сих пор не найдена формула, по которой можно было бы найти количество магических квадратов данного размера. Известно, и это вы можете легко показать сами, что магических квадратов размером 2x2 не существует, магических квадратов 3x3 ровно один, остальные такие квадраты получаются из него поворотами и симметриями. Магических квадратов 4x4 уже 800, а количество квадратов 5x5 близко к четверти миллиона.

    1.3. Виды магических квадратов

    Магический (волшебный квадрат) n 2 числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова.

    Полумагический квадрат - это квадратная таблица nxn, заполненная n 2 числами таким образом, что суммы чисел равны только в строках и столбцах.

    Нормальный – магический квадрат, заполненный целыми числами от 1 до n 2.

    Ассоциативный (симметричный) - магический квадрат, у которого сумма любых двух чисел, расположенных симметрично относительно центра квадрата, равна n 2 + 1.

    Дьявольский (пандиагональный) магический квадрат - магический квадрат, в котором также с магической константой совпадают суммы чисел по ломаным диагоналям (диагонали, которые образуются при сворачивании квадрата в тор) в обоих направлениях.

    Существует 48 дьявольских магических квадратов 4×4 с точностью до поворотов и отражений. Если принять во внимание еще и их дополнительную симметрию - торические параллельные переносы, то останется только 3 существенно различных квадрата (рисунок 2).

    Рисунок 2.

    Пандиагональные квадраты четвёртого порядка обладают рядом дополнительных свойств, за которые их называют совершенными . Совершенных квадратов нечётного порядка не существует. Среди пандиагональных квадратов двойной чётности выше 4 имеются совершенные.

    Пандиагональных квадратов пятого порядка 3600. С учётом торических параллельных переносов имеется 144 различных пандиагональных квадратов.

    2.Решение магических квадратов

    2.1Решение магических квадратов (метод Баше де Мезирака)

    Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы. Найти все магические квадраты порядка n удается только для n ≤ 4.

    Для решения нормальных магических квадратов сколь угодно большого размера воспользуемся методом, описанным в 1612 г. французским математиком Клодом Баше де Мезираком. Русский перевод его книги был издан в Петербурге в 1877 г. под названием «Игры и задачи, основанные на математике».

    Магический квадрат удобно строить на бумаге в клетку. Пусть n-нечётное число, и нужно построить квадрат nхn с числами от 1 до n2 , действуем поэтапно.

    1. Все числа от 1 до n2 записываем в клетки по диагонали (по n чисел в ряд), чтобы образовался диагональный квадрат.

    2. Выделяем в его центре квадрат nхn. Это и есть основа (ещё не все клетки заполнены) будущего магического квадрата.

    3. Каждый находящийся вне центрального квадрата числовой «уголок» аккуратно переносим внутрь - к противоположной стороне квадрата. Числа этих уголков должны заполнить все пустые клетки. Магический квадрат построен.

    Приведём пример заполнения квадрата 3х3 числами от 1 до 9. Для этого к квадрату пририсуем дополнительные клетки, чтобы получить диагонали. Сначала заполним диагональные клетки числами от 1 до 9 (рисунок 3), потом в пустые клетки квадрата «загнём уголки» внутрь к противоположной стороне (рисунок 4).

    Рисунок 3. Рисунок 4.

    2.2. Постановка задачи.

    Опишем свой способ решения магических квадратов. Остановимся на изучении математической модели магических квадратов 3x3.

    Общая формулировка задачи.

    Имеются девять чисел. Необходимо расставить их в клетки квадрата размера 3x3, так чтобы по любой вертикали, горизонтали и диагонали суммы чисел были равны.

    2.3. Алгоритм решения магического квадрата

    Словесное описание алгоритма

    1. Упорядочить числа по возрастанию.

    2. Найти центральное число (пятое по порядку).

    3. Определить пары по правилу: 1 пара - первое число и девятое,

    2 пара - второе число и восьмое,

    3 пара - третье число и седьмое,

    4 пара – четвёртое число и шестое.

    4. Узнать сумму чисел (S), которая должна получиться при сложении чисел по каждой вертикали, горизонтали, диагонали: сложить самое маленькое, центральное, самое большое число, т. е. числа 1 пары с центральным числом.

    5. Поставить в центр квадрата центральное число.

    6. По центральной горизонтали (или вертикали) в свободные клетки вписать первую пару чисел.

    7. По любой диагонали записать вторую пару чисел (так чтобы большее число первой пары оказалось в столбике с меньшим числом второй пары).

    8. Вычислить число, которое надо записать в один из крайних столбиков, по правилу:

    из S вычесть сумму двух чисел, содержащихся в клетках столбика, получить число.

    9. По диагонали к полученному числу записать второе число его пары.

    10. Вписать в оставшиеся клетки последнюю пару чисел по правилу: большее число из пары вписать в строку с меньшим, а меньшее в оставшуюся пустую клетку.

    2.4. Доказательство правильности заполнения магического квадрата

    (Решение задачи в общем виде)

    Докажем, что суммы чисел, находящихся по вертикалям, горизонталям и диагоналям квадрата в результате выполнения алгоритма, получатся равные.

    Пусть после упорядочения каждое последующее число отличается от предыдущего на постоянную величину х . Выразим все числа через а1 (наименьшее число) и х :

    a1 , a2=a1+x,

    a3=a2+ х =a1+2x,

    a4=a1+3x,

    a5=a1+4x,

    a6=a1+5x,

    a7=a1+6x,

    a8=a1+7x,

    a 9 = a 1 +8 x .

    Найдем сумму S и выразим ее через числа а1 и х : S = a 1 + a 5 + a 9 =3 a 1 +12 x .

    Пусть магический квадрат заполнен по предложенному алгоритму.

    Докажем, что суммы чисел, расположенных по горизонтали, вертикали и диагонали квадрата, равны S .

    По вертикали:

    S1=a4+a3+a8=a1+a1+a1+3x+2x+7x=3a1+12x=S

    S2=a9+a5+a1=a1+a1+a1+8x+4x=3a1+12x=S

    S3=a2+a7+a6=a1+a1+a1+x+6x+5x=3a1+12x=S

    По горизонтали:

    S4=a4+a9+a2=a1+a1+a1+3x+8x+x=3a1+12x=S

    S5=a3+a5+a7=a1+a1+a1+2x+4x+6x=3a1+12x=S

    S6=a8+a1+a6=a1+a1+a1+7x+5x=3a1+12x=S

    По диагонали:

    S7=a4+a5+a6=a1+a1+a1+3x+4x+5x=3a1+12x=S

    S8=a8+a5+a2=a1+a1+a1+7x+4x+x=3 а 1 +12x=S

    Получили одинаковые суммы. Утверждение доказано.

    Примечание.

    Числа, организованные таким образом, образуют арифметическую прогрессию. В этой последовательности (после упорядочения) а1 – это первый член арифметической прогрессии, х – это разность арифметической прогрессии. Для чисел, не составляющих арифметическую прогрессию, алгоритм не действует.

    2.5. Пример решения магических квадратов

    Даны числа:5,2,4,8,1,3,7,9,6. Заполнить магический квадрат данными числами.

    1. 1,2,3,4,5,6,7,8,9.

    2. Получили центральное число 5.

    3. Пары:1 и 9, 2 и 8, 3 и 7, 4 и 6.

    4. S = 5+1+9=15 – сумма.

    8. 15-(9+2)=4

    Данный алгоритм существенно отличается от метода Баше де Мезириака. С одной стороны он требует дополнительных вычислений (недостаток метода), с другой стороны в нашем методе не нужны дополнительные построения (диагональный квадрат). Более того, метод применим не только к последовательным натуральным числам от 1 до 9, но и к любым девяти числам, являющимися членами арифметической прогрессии, в чём мы видим его преимущества. Кроме того, автоматически определяется магическая константа – сумма чисел по каждой диагонали, вертикали, горизонтали.

    3. Использование магических квадратов

    3.1. Разные случаи обобщения магических квадратов

    Задачи составления и описания магических квадратов интересовали математиков с древнейших времён. Однако полного описания всех вех возможных магических квадратов не получено и до сего времени. С увеличением размеров (числа клеток) квадрата быстро растёт количество возможных магических квадратов. Среди квадратов больших размеров есть квадраты обладающими интересными свойствами. Например, в квадрате на рисунке № 5 равны между собой не только суммы чисел в строках столбцах и диагоналях, но и суммы пятёрок по «разломанным» диагоналям, связанными на рисунке цветными линиями.

    Рисунок 5. Рисунок 6.

    Латинским квадратов называется квадрат n x n клеток, в которых написаны числа 1, 2, …, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На (рисунке 6) изображены два таких латинских квадрата 4x4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными. Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: «Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадёров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причём каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить этих офицеров в каре 6x6 так, чтобы в любой колонне встречались офицеры всех рангов?» (приложение 2).

    Л. Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не существует.

    3.2. Применение латинских квадратов

    Магические и латинские квадраты близкие родственники. Теория латинских квадратов нашла многочисленные применения, как в самой математике, так и в её приложениях. Приведём такой пример. Пусть мы хотим испытать два сорта пшеницы на урожайность в данной местности, причём хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для этого разобьём квадратный участок на 16 равных частей (рисунок 7). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт посадим на четырёх делянках, соответствующих следующей полосе и т. д. (на рисунке сорт обозначен цветом.)

    Сельское хозяйство" href="/text/category/selmzskoe_hozyajstvo/" rel="bookmark">сельском хозяйстве , физике, химии и технике.

    4. Общие выводы

    В ходе выполнения работы я познакомился с различными видами Магических квадратов, узнал способ решения нормальных магических квадратов методом Баше де Мезирака. Так как наше решение магических квадратов 3х3 отличалось от указанного метода, но позволяло каждый раз правильно заполнить клетки квадрата, то возникло желание разработать собственный алгоритм. Этот алгоритм подробно описан в работе, доказан в алгебраической форме. Оказалось, что он применим не только к нормальным квадратам, но и к квадратам размером 3х3, где числа составляют арифметическую прогрессию. Нам удалось также найти примеры применения магических и латинских квадратов.

    Я научился: решать некоторые магические квадраты, разрабатывать и описывать алгоритмы, доказывать утверждения в алгебраической форме. Я узнал новые понятия: арифметическая прогрессия, магический квадрат, магическая константа, изучил виды квадратов.

    К сожалению, ни мой разработанный алгоритм, ни метод Баше де Мезирака не позволяют решать магические квадраты размера 4х4. Поэтому мне захотелось в дальнейшем составить алгоритм решения для таких квадратов.

    5. Заключение

    В данной работе изучались магические квадраты, рассматривалась история их происхождения. Были определены виды магических квадратов: магический или волшебный квадрат, полумагический квадрат, нормальный, ассоциативный, дьявольский магический квадрат, совершенный.

    Среди существующих способов их решения выбран метод Баше де Мезириака, он апробирован на примерах. Кроме того, для решения магических квадратов 3х3 предложен собственный алгоритм решения, приведено математическое доказательство в алгебраической форме.

    Предложенный алгоритм существенно отличается от метода Баше де Мезириака. С одной стороны, он требует дополнительных вычислений (недостаток метода), с другой стороны, не нужны дополнительные построения. Метод применим не только к последовательным натуральным числам от 1 до 9, но и к любым девяти числам, являющимися членами арифметической прогрессии, в чём мы видим его преимущества. Кроме того, автоматически определяется магическая константа – сумма чисел по каждой диагонали, вертикали, горизонтали.

    В работе представлено обобщение магических квадратов – латинские квадраты и описано их практическое применение.

    Данная работа может быть использована на уроках математики в качестве дополнительного материала, а также на занятиях кружка и в индивидуальной работе с учащимися.

    6. Список литературы

    1. Загадки мира чисел / Сост. – Д.: Сталкер, 1997.-448с.

    2. Энциклопедический словарь юного математика / Сост. – М.: Педагогика, 1989 –352с.: ил.

    3. Энциклопедия для детей. Т11. Математика / Глав. ред. – М.: Аванта+, 2000 – 688с.: ил.

    4. Я познаю мир: Детская энциклопедия: Математика / Сост. – и др. – М.: АСТ, 1996. – 480с.: ил.

    Как решать магические квадраты?



    Магическим квадратом принято называть головоломку наподобие судоку. Это квадрат, клетки которого заполнены числами так, чтобы сумма в конце любой строки, столбца и диагонали была одинаковой. В магических квадратах-головоломках некоторые числа пропущены, и требуется их расставить так, чтобы соблюсти описанное выше условие равной суммы. Как же решать магические квадраты?

    Способы решения магических квадратов

    Для того чтобы решение магических квадратов было верным, необходимо знать ту самую волшебную сумму, которая должна получаться при сложении чисел в строках, столбцах и диагоналях. После этого расставить недостающие числа становится существенно проще. Как же эту сумму найти?

    Способ 1

    Наипростейший вариант магического квадрата - когда одна из строк, один из столбцов или одна из диагоналей полностью заполнена числами. В таком случае остается только подсчитать сумму этих чисел и подбирать решения.

    Способ 2

    Сумму чисел на концах строк, столбцов и диагоналей можно высчитать по специальным формулам. При этом формула для квадратов с четным количеством ячеек в одной строке будет отличаться от квадратов с нечетным количеством ячеек.

    Итак, для четных квадратов подходит формула:

    • n + ((n+1) * n * (n-1) / 2) , где n - количество ячеек в одной строке.

    Для нечетных квадратов подходит формула:

    • n * (n 2 +1) / 2 , где n - также количество ячеек в одной строке.

    Пример решения

    Рассмотрим решения магического квадрата из девяти ячеек с числами от 1 до 9. Сначала подсчитаем сумму, которая должна получаться на концах. В одной строке у нас 3 ячейки, то есть n = 3. Подставляем значение в формулу:

    • 3 * (3 2 +1) / 2 = 3 * 10 / 2 = 15

    Теперь подбираем числа так, чтобы сумма равнялась 15.

    Далее алгоритм потребует немного пространственного воображения. Поставьте число 1 в середину верхней строки. Каждое следующее число мы ставим справа по диагонали вверх. Пробуем ставить 2. Но там нет ячеек, если мы подставим над нашим квадратом еще один такой же воображаемый, то число 2 окажется в правом нижнем углу этого
    нового квадрата. Переносим ее в наш квадрат и ставим в правом нижнем углу. Число 3 также ставим справа по диагонали вверх - и там опять нет ячейки, при помощи воображаемого квадрата узнаем, что его место в середине левого столбца. Число 4 ставим по такому же принципу, но эта ячейка занята единицей - в этом случае ставим ее прямо под цифрой 3. Число 5 по диагонали вверх и вправо от 4 оказывается в самом центре, а число 6 в верхнем правом углу. Число 7 при помощи воображения должно было оказаться в левом нижнем углу. Но там уже стоит 4, поэтому ставим ее прямо под числом 6. Число 8 оказывается при помощи воображаемого квадрата в левом верхнем углу, а число 9 в оставшейся ячейке в середине правого столбца. Общий алгоритм таков: ставим следующее число справа вверху по диагонали, если нет места - применяем воображаемый квадрат, а если ячейка занята, то ставим число прямо под предыдущим.