История производной. Из истории создания производной




Раздел математики который изучает производные функции и их применения, называется дифференциальным исчислением. Это исчисление возникло из решений задач на проведение касательных к кривым, на вычисление скорости движения, на отыскание наибольших и наименьших значений функции.


Ряд задач дифференциального исчисления был решен еще в древности Архимедом, разработавшим способ проведения касательной. Архимед построил касательную к спирали, носящей его имя. Архимед (ок. 287 – 212 до н.э.) – великий ученый. Первооткрыватель многих фактов и методов математики и механики, блестящий инженер.






Задача нахождения скорости изменения функции была впервые решена Ньютоном. Задача нахождения скорости изменения функции была впервые решена Ньютоном. Функцию он назвал флюэнтой, т.е. текущей величиной. Производную – ф л ю к с и е й. Функцию он назвал флюэнтой, т.е. текущей величиной. Производную – ф л ю к с и е й. Ньютон пришел к понятию производной исходя из вопросов механики. Исаак Ньютон (1643 – 1722 гг.) – английский физик и математик.


Основываясь на результатах Ферма и некоторых других выводах, Лейбниц в 1684 году опубликовал первую статью по дифференциальному исчислению, в которой были изложены основные правила дифференцирования. Лейбниц Готфрид Фридрих (1646 – 1716) – великий немецкий ученый, философ, математик, физик, юрист, языковед




Применение производной: Применение производной: 1) Мощность – это производная работы по времени P = A" (t). 2) Сила тока – производная от заряда по времени I = g" (t). 3) Сила – есть производная работы по перемещению F = A" (x). 4) Теплоемкость – это производная количества теплоты по температуре C = Q" (t). 5) Давление – производная силы по площади P = F"(S) 6) Длина окружности – это производная площади круга по радиусу l окр =S" кр (R). 7) Темп роста производительности труда – это производная производительности труда по времени. 8) Успехи в учебе? Производная роста знаний.


Применение производной в физике Задача: Два тела движутся прямолинейно соответственно по законам: S 1 (t) = 3,5t 2 – 5t + 10 и S 2 (t) = 1,5t 2 +3t –6. В какой момент времени скорости тел будут равны? Задача: Два тела движутся прямолинейно соответственно по законам: S 1 (t) = 3,5t 2 – 5t + 10 и S 2 (t) = 1,5t 2 +3t –6. В какой момент времени скорости тел будут равны?


Применение производной в экономике Задача: Предприятие производит Х единиц некоторой однородной продукции в месяц. Установлено, что зависимость финансовых накоплений предприятия от объема выпуска выражается формулой Задача: Предприятие производит Х единиц некоторой однородной продукции в месяц. Установлено, что зависимость финансовых накоплений предприятия от объема выпуска выражается формулой Исследовать потенциал предприятия. Исследовать потенциал предприятия. 15

Производная функции Преподаватель ГАПОУ РО «РКТМ» Колыхалина К.А. Приращение аргумента, приращение функции Пусть х – произвольная точка, лежащая в некоторой окрестности фиксированной точки х0. Разность х-х0 называется приращением независимой переменной (или приращением аргумента) в точке х0 и обозначается ∆х. ∆х = х – х0 – приращение независимой переменной. Приращением функции f в точке x0 называется разность между значениями функции в произвольной точке и значением функции в фиксированной точке. f(х) – f(х0)=f(х0+∆х) – f(х0) – приращение функции f ∆f=f(х0+∆х) – f(х0) Определение производной Производной функции y=f(x) в точке x =x0 называется предел отношения приращения функции ∆y в этой точке к приращению аргумента ∆x, при стремлении приращения аргумента к нулю. Алгоритм вычисления производной Производная функции y= f(x) может быть найдена по следующей схеме: 1. Дадим аргументу x приращение ∆x≠0 и найдем наращенное значение функции y+∆y= f(x+∆x). 2. Находим приращение функции ∆y= f(x+∆x) - f(x). 3. Составляем отношение 4. Находим предел этого отношения при ∆x⇾0, т.е. (если этот предел существует). Определение производной от функции в данной точке. Ее геометрический смысл

k – угловой коэффициент прямой(секущей)

Касательная

Геометрический смысл производной

Производная от функции в данной точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Физический смысл производной 1. Задача об определении скорости движения материальной частицы Пусть вдоль некоторой прямой движется точка по закону s= s(t), где s- пройденный путь, t- время, и необходимо найти скорость точки в момент t0 . К моменту времени t0 пройденный путь равен s0 = s(t0), а к моменту (t0 +∆t) – путь s0 + ∆s=s(t0 +∆t). Тогда за промежуток ∆t средняя скорость будет Чем меньше ∆t, тем лучше средняя скорость характеризует движение точки в момент t0. Поэтому под скоростью точки в момент t0 следует понимать предел средней скорости за промежуток от t0 до t0 +∆t, когда ∆t⇾0 , т.е. 2. ЗАДАЧА О СКОРОСТИ ХИМИЧЕСКОЙ РЕАКЦИИ Пусть некоторое вещество вступает в химическую реакцию. Количество этого вещества Q изменяется в течение реакции в зависимости от времени t и является функцией от времени. Пусть за время ∆t количество вещества изменяется на ∆Q , тогда отношение будет выражать среднюю скорость химической реакции за время ∆t, а предел этого отношения - скорость химической реакции в данный момент времени t.

3. ЗАДАЧА ОПРЕДЕЛЕНИЯ СКОРОСТИ РАДИОАКТИВНОГО РАСПАДА

Если m- масса радиоактивного вещества и t- время, то явление радиоактивного распада в момент времени t при условии, что масса радиоактивного вещества с течением времени уменьшается, характеризуется функцией m= m(t).

Средняя скорость распада за время ∆t выражается отношением

а мгновенная скорость распада в момент времени t

Физический смысл производной функции в данной точке

Производные основных элементарных функций Основные правила дифференцирования Пусть u=u(x) и v=v(x) – дифференцируемые функции в точке x. 1) (u  v) = u  v 2) (uv) = uv +uv (cu) = cu 3) , если v  0

История «Производной». Слайд №3. И. Историческая справка. Давид Гильберт. Общее понятие производной было сделано независимо друг от друга почти одновременно. Конец XVI – середина XVII веков ознаменовались огромным интересом ученых к объяснению движения и нахождению законов, которым оно подчиняется. Как никогда остро встали вопросы об определении и вычислении скорости движения и его ускорения. Решение этих вопросов привело к установлению связи между задачей о вычислении скорости движения тела и задачей проведения касательной к кривой, описывающей зависимость пройденного расстояния от времени. английским физиком и математиком И.Ньютоном. немецким философом и математиком Г.Лейбницем.

Слайд 10 из презентации «Вычисление производных» к урокам алгебры на тему «Вычисление производной»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке алгебры, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Вычисление производных.ppt» можно в zip-архиве размером 220 КБ.

Скачать презентацию

Вычисление производной

«Производная функции в точке» - Программированный контроль. Вопросы теории. 0. Найдите значение производной в точке хо. 1) Найти угловой коэффициент касательной к графику функции f(x)=Cosх в точке х= ?/4. А. В точке. Х.

«Первообразная функция» - Повторение. Повторительно-обобщающий урок (алгебра 11 класс). Выполните задание. Докажите, что функция F есть первообразная для функции f на множестве R. Основное свойство первообразной. Найдите общий вид первообразной для функции. Сформулируйте: Определение первообразной. Правила нахождения первообразной.

«Производная показательной функции» - www.thmemgallery.com. 11 класс. Правила дифференцирования. Теорема 1. Функция дифференцируема в каждой точке области определения, и. Производная показательной функции. Применение производной при исследовании функции. Теорема 2. Уравнение касательной. Производные элементарных функций. Натуральным логарифмом называется логарифм по основанию е:

«Вычисление производных» - Устная разминка, повторение правил вычисления производных (слайд №1) 3. Практическая часть. Сегодняшний урок пройдет с использованием презентаций. 2. Активизация знаний. Операция нахождения производной называется дифференцированием. Слайд №1. Самооценка учащихся. Основные этапы урока Организационный момент.

«Геометрический смысл производной» - B. Геометрический смысл приращения функции. С. Итак, Геометрический смысл отношения при. A. Слайд 10. K – угловой коэффициент прямой(секущей). Определение производной от функции (К учебнику Колмогорова А.Н. «Алгебра и начала анализа 10-11»). Цель презентации – обеспечить максимальную наглядность изучения темы.

История появления понятия производной


Функции, границы, производная и интеграл являются базовыми понятиями математического анализа, изучаемыми в курсе средней школы. И понятие производной неразрывно связано с понятием функции.

Термин "функция" впервые был предложен немецким философом и математиком для характеристики разных отрезков, соединяющих точки некоторой кривой в 1692 г. Первое определение функции, которое уже не было связано с геометрическими представлениями, сформулировал в 1718г. Ученик Иоганна Бернулли

в 1748. уточнил определение функции . Заслугам Эйлера приписывают введение для обозначения функции символ f (х).

Строгое определение предела и непрерывности функции сформулировал в 1823 г. Французский математик Огюстен Луи Коши . Определение непрерывности функции еще раньше Коши сформулировал чешский математик Бернард Больцано . По этим определениям на базе теории действительных чисел было осуществлено строгое обоснование основных положений математического анализа.

Открытию подходов и основ дифференциального исчисления предшествовали работы французского математика и юриста , который в 1629 г. предложил способы нахождения наибольших и наименьших значений функций, проведение касательных к произвольным кривым, фактически опирались на применение производных. Этому способствовали также работы , разработавший метод координат и основы аналитической геометрии. Лишь в 1666 году и несколько позднее независимо друг от друга построили теорию дифференциального исчисления. Ньютон пришел к понятию производной, решая задачи о мгновенной скорости, а , - рассматривая геометрическую задачу о проведении касательной к кривой. и исследовали проблему максимумов и минимумов функций.

Интегральное исчисление и само понятие интеграла возникли из потребностей вычисления площадей плоских фигур и объемов произвольных тел. Идеи интегрального исчисления берут начало в работах древних математиков. Однако это свидетельствует "метод исчерпывания" Евдокса, который позже использовал в III в. до н. э Суть этого метода заключалась в том, что для вычисления площади плоской фигуры и, увеличивая число сторон многоугольника, находили границу, в которую направлялись площади ступенчатых фигур. Однако для каждой фигуры вычисления предела зависело от выбора специального приема. А проблема общего метода вычисления площадей и объемов фигур оставалась нерешенной. Архимед еще явно не применял общее понятие границы и интеграла, хотя в неявном виде эти понятия использовались.

В XVII в. , открывший законы движения планет, была успешно осуществлена первая попытка развить идеи . Кеплер вычислял площади плоских фигур и объемы тел, опираясь на идею разложения фигуры и тела на бесконечное количество бесконечно малых частей. Из этих частей в результате добавления состояла фигура, площадь которой известно и позволяющая вычислить площадь искомой. В историю математики вошел так называемый "принцип Кавальери", с помощью которого вычисляли площади и объемы. Этот принцип получил теоретическое обоснование позже с помощью интегрального исчисления.
Идеи и других ученых стали той почвой, на котором Ньютон и Лейбниц открыли интегральное исчисление. Развитие интегрального исчисления продолжили и гораздо позже Пафнутий Львович Чебышев разработал способы интегрирования некоторых классов иррациональных функции.

Современное определение интеграла как предела интегральных сумм принадлежит Коши . Символ

Министерство образования Саратовской области

Государственное автономное профессиональное образовательное учреждение Саратовской области «Энгельсский политехникум»

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ В РАЗНИЧНЫХ ОБЛАСТЯХ НАУКИ

Выполнила: Вербицкая Елена Вячеславовна

преподаватель математики ГАПОУ СО

«Энгельсский политехникум»

Введение

Роль математики в различных областях естествознания очень велика. Недаром говорят «Математика – царица наук, физика ее правая рука, химия – левая».

Предмет исследования – производная.

Ведущая цель - показать значимость производной не только в математике, но и в других науках, её важность в современной жизни.

Дифференциальное исчисление – это описание окружающего нас мира, выполненное на математическом языке. Производная помогает нам успешно решать не только математические задачи, но и задачи практического характера в разных областях науки и техники.

Производная функции используется всюду, где есть неравномерное протекание процесса: это и неравномерное механическое движение, и переменный ток, и химические реакции и радиоактивный распад вещества и т.д.

Ключевой и тематический вопросы данного реферата:

1. История возникновения производной.

2. Зачем изучать производные функций?

3. Где используются производные?

4. Применение производных в физике, химии, биологии и других науках.

Я решила написать работу на тему «Применение производной в различных областях науки», потому что считаю эту тему очень интересной, полезной и актуальной.

В своей работе я расскажу о применении дифференцирования в различных областях науки, таких как химия, физика, биология, география и т. д. Ведь все науки неразрывно связаны между собой, что очень хорошо видно на примере рассматриваемой мною темы.

Применение производной в различных областях науки

Из курса алгебры старших классов мы уже знаем, чтопроизводная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Действие нахождения производной называется её дифференцированием, а функцию, имеющую производную в точке х, называют дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке промежутка, называется дифференцируемой в этом промежутке.

Честь открытия основных законов математического анализа принадлежит английскому физику и математику Исааку Ньютону и немецкому математику, физику, философу Лейбницу.

Ньютон ввел понятие производной, изучая законы механики, тем самым раскрыл её механический смысл.

Физический смысл производной: производная функции y =f (x ) в точке x 0 – это скорость изменения функции f (x ) в точке x 0 .

Лейбниц пришёл к понятию производной, решая задачу проведения касательной к производной линии, объяснив этим ее геометрический смысл.

Геометрический смысл производной состоит в том, что производная функция в точке x 0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x 0 .

Термин производная и современные обозначения y " , f " ввёл Ж.Лагранж в 1797г.

Российский математик 19 века Панфутий Львович Чебышев говорил, что «особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека, например, как располагать своими средствами для достижения наибольшей выгоды».

С такими задачами в наше время приходится иметь дело представителям самых разных специальностей:

    Инженеры технологи стараются так организовать производство, чтобы выпускалось как можно больше продукции;

    Конструкторы пытаются разработать прибор для космического корабля так, чтобы масса прибора была наименьшей;

    Экономисты стараются спланировать связи завода с источниками сырья так, чтобы транспортные расходы оказались минимальными.

При изучении любой темы у учеников возникает вопрос: «Зачем нам это надо?» Если ответ удовлетворит любопытство, то можно говорить о заинтересованности учеников. Ответ для темы «Производная» можно получить, зная, где используются производные функций.

Чтобы ответить на этот вопрос, можно перечислить некоторые дисциплины и их разделы, в которых применяются производные.

Производная в алгебре:

1. Касательная к графику функции

Касательная к графику функции f, дифференцируемой в точке x о, - это прямая, проходящая через точку (x о; f (x о)) и имеющая угловой коэффициент f ′(x о).

y = f (x о) + f ′(x о) (x – x о)

2. Поиск промежутков возрастания и убывания функции

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

3. Поиск точек экстремума функции

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

4. Поиск промежутков выпуклости и вогнутости функции

выпуклым , если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым , если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).

Точкой перегиба графика функции называется точка , разделяющая промежутки выпуклости и вогнутости.

5. Поиск точек изгиба функции

Производная в физике:

1. Скорость как производная пути

2. Ускорение как производная скорости a =

3. Скорость распада радиоактивных элементов = - λN

А так же в физике производную применяют для вычисления:

Скорости материальной точки

Мгновенной скорости как физический смысл производной

Мгновенное значение силы переменного тока

Мгновенное значение ЭДС электромагнитной индукции

Максимальную мощность

Производная в химии:

И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств.

Производную в химии используют для определения очень важной вещи – скорости химической реакции, одного из решающих факторов, который нужно учитывать во многих областях научно-производственной деятельности. V (t) = p ‘(t)

Производная в биологии:

Популяция – это совокупность особей данного вида, занимающих определённый участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций, а также является элементарной единицей эволюции.

Производная в географии:

1. Некоторые значения в сейсмографии

2. Особенности электромагнитного поля земли

3. Радиоактивность ядерно- геоифзичексих показателей

4.Многие значения в экономической географии

5.Вывести формулу для вычисления численности населения на территории в момент времени t.

у’= к у

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения пропорционально числу населения в данный момент времени t через N(t) .Модель Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860 годы. Ныне эта модель в большинстве стран не действует

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает электрический ток. Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

В электротехнике в основном используется работа переменного тока.

Электрический ток, изменяющийся со временем, называют переменным. Цепь переменного тока может содержать различные элементы: нагревательные приборы, катушки, конденсаторы.

Получение переменного электрического тока основано на законе электромагнитной индукции, формулировка которого содержит производную магнитного потока.

Производная в экономике:

Экономика – основа жизни, а в ней важное место занимает дифференциальное исчисление – аппарат для экономического анализа. Базовая задача экономического анализа – изучение связей экономических величин в виде функций.

Производная в экономике решает важные вопросы:

1. В каком направлении изменится доход государства при увеличении налогов или при введении таможенных пошлин?

2. Увеличится или уменьшится выручка фирмы при увеличение цены на её продукцию?

Для решения этих вопросов нужно построить функции связи входящих переменных, которые затем изучаются методами дифференциального исчисления.

Также с помощью экстремума функции (производной) в экономике можно найти наивысшую производительность труда, максимальную прибыль, максимальный выпуск и минимальные издержки.

ВЫВОД: производная успешно применяется при решении различных прикладных задач в науке, технике и жизни

Как видно из вышеперечисленного применение производной функции весьма многообразно и не только при изучении математики, но и других дисциплин. Поэтому можно сделать вывод, что изучение темы: «Производная функции» будет иметь своё применение в других темах и предметах.

Мы убедились в важности изучения темы "Производная", ее роли в исследовании процессов науки и техники, в возможности конструирования по реальным событиям математические модели, и решать важные задачи.

“Музыка может возвышать или умиротворять душу,
Живопись – радовать глаз,
Поэзия – пробуждать чувства,
Философия – удовлетворять потребности разума,
Инженерное дело – совершенствовать материальную сторону жизни людей,
А математика способна достичь всех этих целей”.

Так сказал американский математик Морис Клайн.

Список используемой литературы:

1. Богомолов Н.В., Самойленко И.И. Математика. - М.: Юрайт, 2015.

2. Григорьев В.П., Дубинский Ю.А, Элементы высшей математики. - М.: Академия, 2014.

3. Баврин И.И. Основы высшей математики. - М.: Высшая школа, 2013.

4. Богомолов Н.В. Практические занятия по математике. - М.: Высшая школа, 2013.

5. Богомолов Н.В. Сборник задач по математике. - М.: Дрофа, 2013.

6. Рыбников К.А. История математики, «Издательство Московского университета», М, 1960.

7. Виноградов Ю.Н., Гомола А.И., Потапов В.И., Соколова Е.В. – М.: Издательский центр «Академия», 2010

8. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия. – М.: Издательский центр «Академия», 2016

Периодические источники:

Газеты и журналы: «Математика», «Открытый урок»

Использование ресурсов сети Интернет, электронных библиотек.