Роль системной методологии в современной науке. Системы и системный подход к обеспечению качества

Системный подход представляет собой направление методологии научного познания и социальной практики, в основе которой лежит рассмотрение объектов как систем.

Сущность СП заключается, во-первых, в понимании объекта исследования как системы и, во-вторых, в понимании процесса исследования объекта как системного по своей логике и применяемым средствам.

Как любая методология, системный подход подразумевает наличие определенных принципов и способов организации деятельности, в данном случае деятельности, связанной с анализом и синтезом систем.

В основе системного подхода лежат принципы: цели, двойственности, целостности, сложности, множественности и историзма. Рассмотрим подробнее содержание перечисленных принципов.

Принцип цели ориентирует на то, что при исследовании объекта необходимо прежде всего выявить цель его функционирования.

Нас в первую очередь должно интересовать не как построена система, а для чего она существует, какая цель стоит перед ней, чем она вызвана, каковы средства достижения цели?

Принцип цели конструктивен при соблюдении двух условий:

Цель должна быть сформулирована таким образом, чтобы степень ее достижения можно было оценить (задать) количественно;

В системе должен быть механизм, позволяющий оценить степень достижения заданной цели.

2. Принцип двойственности вытекает из принципа цели и означает, что система должна рассматриваться как часть системы более высокого уровня и в то же время как самостоятельная часть, выступающая как единое целое во взаимодействии со средой. В свою очередь каждый элемент системы обладает собственной структурой и также может рассматриваться как система.

Взаимосвязь с принципом цели состоит в том, что цель функционирования объекта должна быть подчинена решению задач функционирования системы более высокого уровня. Цель – категория внешняя по отношению к системе. Она ставится ей системой более высокого уровня, куда данная система входит как элемент.

3.Принцип целостности требует рассматривать объект как нечто выделенное из совокупности других объектов, выступающее целым по отношению к окружающей среде, имеющее свои специфические функции и развивающееся по свойственным ему законам. При этом не отрицается необходимость изучения отдельных сторон.

4.Принцип сложности указывает на необходимость исследования объекта, как сложного образования и, если сложность очень высока, нужно последовательно упрощать представление объекта, на так чтобы сохранить все его существенные свойства.

5.Принцип множественности требует от исследователя представлять описание объекта на множестве уровней: морфологическом, функциональном, информационном.

Морфологический уровень дает представление о строении системы. Морфологическое описание не может быть исчерпывающим. Глубина описания, уровень детализации, то есть выбор элементов, внутрь которых описание не проникает, определяется назначением системы. Морфологическое описание иерархично.

Конкретизация морфологии дается на стольких уровнях, сколько их требуется для создания представления об основных свойствах системы.

Функциональное описание связано с преобразованием энергии и информации. Всякий объект интересен прежде всего результатом своего существования, местом, которое он занимает среди других объектов в окружающем мире.

Информационное описание дает представление об организации системы, т.е. об информационных взаимосвязях между элементами системы. Он дополняет функциональное и морфологическое описания.

На каждом уровне описания действуют свои, специфические закономерности. Все уровни тесно взаимосвязаны. Внося изменения на одном из уровней, необходимо проводить анализ возможных изменений на других уровнях.

6. Принцип историзма обязывает исследователя вскрывать прошлое системы и выявлять тенденции и закономерности ее развития в будущем.

Прогнозирование поведения системы в будущем является необходимым условием того, что принятые решения по совершенствованию существующей системы или создание новой обеспечивает эффективное функционирование системы в течении заданного времени.

СИСТЕМНЫЙ АНАЛИЗ

Системный анализ представляет совокупность научных методов и практических приемов решения разнообразных проблем на основе системного подхода.

В основе методологии системного анализа лежат три концепции: проблема, решение проблемы и система.

Проблема - это несоответствие или различие между существующим и требуемым положением дел в какой-либо системе.

В качестве требуемого положения может выступать необходимое или желаемое. Необходимое состояние диктуется объективными условиями, а желаемое определяется субъективными предпосылками, в основе которых лежат объективные условия функционирования системы.

Проблемы, существующие в одной системе, как правило, не равнозначны. Для сравнения проблем, определения их приоритета используются атрибуты: важность, масштаб, общность, актуальность и т.д.

Выявление проблемы осуществляется путем идентификации симптомов , определяющих несоответствие системы своему предназначению или недостаточную ее эффективность. Систематически проявляющиеся симптомы образуют тенденцию.

Идентификация симптомов производится путем измерения и анализа различных показателей системы, нормальное значение которых известны. Отклонение показателя от нормы и является симптомом.

Решение проблемы состоит в ликвидации различий между существующим и требуемым состоянием системы. Ликвидация различий может производиться либо путем совершенствования системы, либо путем ее замены на новую.

Решение о совершенствовании или замене принимается с учетом следующих положений. Если направление совершенствования обеспечивает существенное увеличение жизненного цикла системы и затраты несравнимо малы по отношению к стоимости разработки системы, то решение о совершенствовании оправдано. В противном случае следует рассматривать вопрос о ее замене новой.

Для решения проблемы создается система.

Основными компонентами системного анализа являются:

1. Цель системного анализа.

2. Цель, которую должна достигнуть система в процессе: функционирования.

3. Альтернативы или варианты построения или совершенствования системы, посредством которых возможно решение проблемы.

4. Ресурсы, необходимые для анализа и совершенствования существующей системы или создания новой.

5. Критерии или показатели, позволяющие сравнивать различные альтернативы и выбирать наиболее предпочтительные.

7. Модель, которая связывает воедино цель, альтернативы, ресурсы и критерии.

Методика проведения системного анализа

1.Описание системы:

а) определение цели системного анализа;

б) определение целей, назначения и функций системы(внешних и внутренних);

в) определение роли и места в системе более высокого уровня;

г) функциональное описание (вход, выход, процесс, обратная связь, ограничения);

д) структурное описание (вскрытие взаимосвязей, стратификация и декомпозиция системы);

е) информационное описание;

ж) описание жизненного цикла системы(создание, функционирование и в том числе совершенствование, разрушение);

2.Выявление и описание проблемы:

а) определение состава показателей эффективности и методик их вычисления;

б) Выбор функционала для оценки эффективности системы и задание требований к ней(определение необходимого (желаемого) положения дел);

б) определение фактического положения дел(вычисление эффективности существующей системы с использованием выбранного функционала);

в) установление несоответствия между необходимым(желаемым) и фактическим состоянием дел и его оценка;

г) история возникновения несоответствия и анализ причин ее возникновения (симптомы и тенденции);

д) формулировка проблемы;

е) выявление связей проблемы с другими проблемами;

ж) прогнозирование развития проблемы;

з) оценка последствий проблемы и вывод о ее актуальности.

3. Выбор и реализация направления решения проблемы:

а) структуризация проблемы (выделение подпроблем)

б) определение узких мест в системе;

в) исследование альтернативы “совершенствование системы - создание новой системы”;

г) определение направлений решения проблемы(выбор альтернатив);

д) оценка реализуемости направлений решения проблемы;

е) сравнение альтернатив и выбор эффективного направления;

ж) согласование и утверждение выбранного направления решения проблемы;

з) выделение этапов решения проблемы;

и) реализация выбранного направления;

к) проверка его эффективности.

Естествознание в классический период своего развития во многом следовало декартовским правилам научного метода, второе и третье правила которого ориентировали ученого следующим образом: если имеешь дело со сложной проблемой, то прежде всего разложи ее на простые, реши их, а затем собери в обратном порядке из простых проблем, как кирпичиков, сложную проблему, и знание ответа на простые проблемы даст ответ на сложную проблему. Это правило формирует убеждение, что сложная проблема не содержит в себе никаких дополнительных обстоятельств, помимо тех, которые содержатся в простых. Поэтому, тщательно изучая простое, мы не потеряем ничего из того, что присуще сложному. Нужно только лишь уметь профессионально аналитически (анализ versus синтез) мыслить. В этом заключается суть элемептаризма (другими словами - редукционизма) как методологической программы классической науки.

Элементаристская установка сопровождалась построением такой картины мира, в которой отсутствуют какие- либо утверждения о целостности, принципиально отличающиеся от знания частей. Целое и часть рассматривались в принципе как одинаковые по своим свойствам. Целое не обладало каким-то своим особым качеством, которого бы не было у его частей, а свойства целого никак не сказывались на свойствах и поведении его частей. Другими словами, с этой точки зрения «быть целым, быть целостностью» - это лишь фиктивное и кажущееся неглубокому уму явление. Оно есть результат незнания, но не сама реальность. Аналогией может служить онтология знаменитого древнегреческого атомиста Демокрита: все есть атомы и пустота.

Галилеем и Декартом был впервые сформирован принцип аналитической процедуры как основного метода науки, гласящий, что исследуемая сущность должна быть разложена на части, а затем может быть воссоздана из собранных вместе частей. Успешное применение аналитических процедур возможно лишь при выполнении следующих условий:

  • - взаимодействие между частями данного явления должно отсутствовать (или быть пренебрежимо мало);
  • - отношения, описывающие поведение частей, должны быть линейными.

При этом форма уравнения, описывающего поведение целого, должна совпадать с формой уравнений для частей этого целого. Однако, как оказалось, для описания реальных систем это в принципе невозможно. В этом и заключается основное отличие системной методологии от элемен- таристской методологии классической науки.

Хотя на базе элементаристской стратегии были достигнуты большие успехи, тем не менее, по мере развития новых областей науки, расширения предметной области исследования и совершенствования научного инструментария исходные принципы этой стратегии стали постепенно терять свою привлекательность и авторитет как единственно научной основы взгляда на мир. Известный физик А. Эддингтон специально обращал внимание ученых на то, что те нередко думают, что, изучив один какой-то объект, знают все о двух точно таких же объектах, ибо два - это «один и один». При этом, однако, эти ученые забывают, что необходимо исследовать еще и то, что скрывается за этим «и». С начала XX в. стала набирать силу противоположная, антиэлементарист- ская стратегия научного исследования, а во второй половине - она стала едва ли не господствующей.

Центральным пунктом этой новой стратегии, несмотря на все многообразие ее реальных воплощений, явилось убеждение в том, что существуют целостности, обладающие собственными свойствами, собственной индивидуальностью, которая подчиняет себе те элементы, которые в нее входят. Целостность не только реальна, но и первична по отношению к своим частям. И уж конечно целостность не является плодом незрелого мышления. На языке математики системные объекты обычно описываются системами нелинейных дифференциальных уравнений. В математике всерьез заговорили о структурах. Более того, как утверждали знаменитые Бурбаки , именно структуры должны быть и являются главным предметом математики.

Большую роль в формировании антиредукционистской методологии в науке сыграли дискуссии по следующей проблеме: каково место физики и химии в исследовании живого. Существует ли нечто «биологическое», не сводимое к физическому и химическому? Что такое жизнь с точки зрения физика и биолога? Что есть такого особенного в «живом» - предмете исследования биолога, чего нет в физической и химической реальности? В биологии давно уже пробивала себе дорогу идея о том, что жизнь - это свойство целостности. Но активное и плодотворное применение физико-химических методов в исследовании живого часто ставило эту идею под сомнение.

Старая идея о том, что целое больше суммы своих частей, получала новое звучание. Выдающийся лингвист Ф. Сосюр писал, что лингвистика станет научной только тогда, когда станет исследовать не отдельные знаки, такие как слова, звуки, предложения, а когда она станет изучать системы и структуры языка.

В XX в. антиэлементаристская стратегия нашла свое окончательное закрепление в системном подходе. Целостность стала называться системой. Вйдение же (понимание) любой предметной области как системы - системным мышлением. Целенаправленное применение системного способа мышления для решения научных проблем стало называться системным подходом. А вся совокупность исследований, включающих системную проблематику - системными исследованиями.

Постепенно понятие «система» стало одним из самых распространенных в науке, философии, обыденной речи. Вместе с тем, такое широкое употребление этого понятия в самых различных контекстах неизбежно привело к многозначности и неопределенности его смысла и значения. Отсутствие сколько-нибудь однозначного, точного значени я этого слова фактически лишало его какой-либо эвристической силы. Далеко не сразу в XX в. появились работы, которые дали возможность говорить о системах что-то глубокое и содержательное. Различными учеными были предприняты попытки превратить системное мышление в строгое мышление, г.е. такое мышление, которое подчиняется определенным правилам. Постепенно системный подход превратился в междисциплинарное научное направление.

Применение системных методов для решения разного рода научных и практических задач потребовало разработки строгих формальных определений системы. Такие определения строились с помощью языков теории множеств, математической логики, кибернетики и других наук. Часто это делалось применительно к конкретным задачам и проблемам соответствующей области исследований: управление космическими полетами, транспортом, производством, глобальное моделирование, военная стратегия, деловые проблемы и др. К середине XX в. системная методология превратилась в мощное и очень широкое по охвату проблем интеллектуальное движение, реализовавшееся в системных исследованиях. Оно проникло в разные области человеческой деятельности и приняло весьма разнообразные формы. Предметом системных исследований стало определение общих свойств систем, определение различий между системами, классификация систем, проектирование систем, анализ систем (например, изучение поведения системы, определение ее целей и понимание ее работы), моделирование систем и др. Сформировались различные версии системного подхода в соответствии с используемым инструментарием и характером проблем.

Системный дискурс очень неоднороден по проблематике, по методам исследования, по используемой терминологии, по уровню строгости, а, следовательно, и по уровню обоснованности и доказательности. Часто и до сих пор системным называют обычное комплексное исследование, когда при решении проблемы просто суммируются данные различных наук. Системным также называют исследование некоторого явления во «всех» его взаимосвязях с другими явлениями. Но требование комплексности и требование полноты охвата взаимосвязей сами по себе еще не содержат ничего системного. Внутри собственно системных исследований уровень строгости простирается от строгости теоретических построений общей теории систем (логических и математических) до использования более или менее определенного термина «система» и связанных с ним системных представлений.

Центральным понятием в системных исследованиях безусловно является категория «система». Однако, если мы используем слово «система», мы должны отдавать себе полный отчет в том, какие обязательства это на нас накладывает.

  • Бурбаки (Bourbaki Nicolas), собирательный псевдоним, под которым группа математиков во Франции предприняла (с 1939 г.) попыткунетрадиционно изложить современную математику на основе аксиоматического метода.

В наше время происходит невиданный прогресс знания, который, с одной стороны, привел к изобретению и скоплению многих новейших сведений, факторов из различных областей жизни, и тем самым поставил человечество перед потребностью их систематизации, отыскания общего в частном, неизменного в изменяющемся. Однозначного понятия системы не существует. В наиболее общем виде под системой понимается совокупность взаимосвязанных частей, образующих определенную целостность, некоторое единство.

Системный подход - это методология рассмотрения разного рода комплексов, позволяющая глубже и лучше осмыслить их сущность (структуру, организацию и другие особенности) и найти оптимальные пути и методы воздействия на развитие таких комплексов и систему управления ими.

Системный подход является необходимым условием применения математических методов, но его значение выходит за данные рамки. Системный подход - это всеобъемлющий комплексный подход. Он подразумевает многосторонний учет специфических черт соответствующего объекта, определяющих его структуру, а, следовательно, и организацию.

Каждая система имеет свои, присущие ей, особенности. Собственную реакцию на управление, собственную способность реагировать на различного рода воздействия, собственные формы возможного отклонения от программы.

Производственные объекты представляют собой сложные иерархические системы, состоящие из комплекса взаимосвязанных и взаимозависимых подсистем: предприятие, цех производственный участок, участок «человек-машина».

Работы по организации и управлению производством состоят в проектировании и обеспечении функционирования систем. Они включают:

  • 1)Установление характера взаимосвязи элементов системы (подсистем) и каналов, по которым осуществляются связи в пределах системы;
  • 2)Создание условий согласованного развития элементов системы и достижения тех целей, для реализации которых она предназначена;
  • 3)Создание механизма, обеспечивающего это согласование;
  • 4)Организационное построение органов управления, разработка методов и приемов управления системой.

Системный подход к управлению производством (организацией) получил наибольшее распространение в США и используется практически во всех странах. Он предполагает рассмотрение фирмы как сложной системы, состоящей из различных подсистем, функции. Этим обусловлена классификация подсистем, составляющих либо организационную структуру фирмы, либо производственную структуру.

Понятие «система» предполагает, что все входящие в нее подсистемы тесно между собой взаимосвязаны и имеют многообразные связи с внешней средой. Фирма рассматривается как организация, представляющая собой комплекс взаимосвязанных элементов. При этом внутренняя структура организационной системы допускает относительную автономность подсистем, которые образуют иерархию подсистем.

Системный подход предполагает наличие особого единства системы со средой, она определяется как совокупность внешних элементов, оказывающих влияние на взаимодействие элементов системы.

Для выражения сути системы используются различные средства: графические, математические, матричные, «дерево решений» и др. каждое из этих средств не может полностью отразить суть системы, которая состоит во взаимосвязи ее элементов. управленческий пенсионный челябинск

Всестороннее изучение взаимосвязей элементов (подсистем) необходимо для построения модели объекта управления - фирмы либо предприятия. Эксперименты с моделью дают возможность совершенствовать управленческие решения, то есть находить наиболее эффективные пути достижения целей.

Изучение связей элементов (подсистем) необходимо для представления модели объекта управления. Это даёт возможность улучшить управленческие решения, находить более действенные способы достижения целей.

Системный подход к управлению производством исходит из того, что разработка планов диверсифицированного и децентрализованного производства подчиняется интересам взаимодействия производственных подразделений, составляющих производственную (операционную) систему. Такой подход получил развитие благодаря использованию компьютерной техники и созданию централизованных информационных систем.

Использование компьютерной техники на основе системного подхода позволяет совершенствовать методы и структуру управления производством.

Системный подход как общеметодический принцип используется в различных отраслях науки и деятельности человека. Гносеологической основой (гносеология - раздел философии, изучающий формы и методы научного познания) является общая теория систем, начало которой положил австралийский биолог Л. Берталанфи. Предназначение этой науки он видел в поиске структурного сходства законов, установленных в различных дисциплинах, исходя из которых можно вывести общесистемные закономерности.

В данном плане системный подход представляет одну из форм методологического знания, связанную с исследованием и созданием объектов как систем, и относится лишь к системам (первая черта системного подхода).

Второй чертой системного подхода является иерархичность познания, требующая многоуровневого изучения предмета: изучение самого предмета; «собственный» уровень; изучение этого же предмета как элемента более широкой системы - «вышестоящий» уровень и, наконец, изучение этого предмета в соотношении с составляющими данный предмет элементами - нижестоящий уровень.

Следующей чертой системного подхода является изучение интегративных свойств и закономерностей систем и комплексов систем, раскрытие базисных механизмов интеграции целого. И, наконец, важной чертой системного подхода является его нацеленность на получение количественных характеристик, создание методов, сужающих неоднозначность понятий, определений, оценок. Другими словами, системный подход требует рассматривать проблему не изолированно, а в единстве связей с окружающей средой, постигать сущность каждой связи и отдельного элемента, проводить ассоциации между общими и частными целями. Все это формирует особый метод мышления, позволяющий гибко реагировать на изменения обстановки и принимать обоснованные решения.

С учетом сказанного определим понятие системного подхода.

Системный подход - это подход к исследованию объекта (проблемы, явления, процесса) как к системе, в которой выделены элементы, внутренние и внешние связи, наиболее существенным образом влияющие на исследуемые результаты его функционирования, а цели каждого из элементов определены исходя из общего предназначения объекта.

На практике для реализации системного подхода необходимо предусмотреть выполнение следующей последовательности действий:

формулировку задачи исследования;

выявление объекта исследования как системы из окружающей среды;

установление внутренней структуры системы и выявление внешних связей;

определение (или постановка) целей перед элементами исходя из проявляющегося (или ожидаемого) результата всей системы в целом;

разработка модели системы и проведение на ней исследований.

В настоящее время много работ посвящено системным исследованиям. Общее у них то, что все они посвящены решению системных задач, в которых объект исследований представляется в виде системы.

формулирование целей и выяснение их иерархии до начала какой-либо деятельности, связанной с управлением, особенно с принятием решений;

достижение поставленных целей при минимальных затратах посредством сравнительного анализа альтернативных путей и методов достижения целей и осуществления соответствующего выбора;

количественная оценка (квантификация) целей, методов и средств их достижения, основанная не на частичных критериях, а на широкой и всесторонней оценке всех возможных и планируемых результатов деятельности.

Наиболее широкая трактовка методологии системного подхода принадлежит профессору Людвигу Берталанфи, выдвинувшему еще в 1937 г. идею «общей теории систем».

Предмет «общей теории систем» Берталанфи определяет как формирование и фиксацию общих принципов, которые действительны для систем вообще. «Следствием наличия общих свойств систем, - писал он, - является проявление структурных подобий, или изоморфизмов, в различных областях. Это соответствие вызвано тем обстоятельством, что данные единства можно в некоторых отношениях рассматривать как «системы», те комплексы элементов, находящихся во взаимодействии. Фактически аналогичные концепции, модели и законы часто обнаруживались в весьма далеких друг от друга областях, независимо и на основании совершенно различных фактов».

Системные задачи могут быть двух типов: системного анализа или системного синтеза.

Задача анализа предполагает определения свойств системы по известной ей структуре, а задача синтеза - определение структуры системы по ее свойствам.

Задачей синтеза является создание новой структуры, которая должна обладать желаемыми свойствами, а задачей анализа - изучение свойств уже существующего образования.

Системный анализ и синтез предполагает исследование больших систем, сложных задач. Н.Н. Моисеев отмечает: «Системный анализ... требует анализа сложной информации различной физической природы». Исходя из этого, Ф.И. Перегудов определяет, что «... системный анализ есть теория и практика улучшающего вмешательства в проблемные ситуации». Рассмотрим особенности реализации системного подхода. Любое исследование предваряет его формулировка, из которой должно быть понятно, что нужно делать и на основании чего это делать.

В формулировке задачи исследования надо постараться различить общий и частный планы. Общий план определяет тип задачи - анализ или синтез. Частный план задачи отражает функциональное предназначение системы и описывает характеристики, подлежащие исследованию.

Например:

  • 1) разработать (общий план - задача синтеза) космическую систему, предназначенную для оперативного наблюдения земной поверхности (частный план);
  • 2) определить (общий план - задача анализа) оперативность, наблюдение земной поверхности с помощью космической системы (частный план).

Конкретность формулировки задачи во многом зависит от знаний исследователя и имеющейся информации. Меняется представление о системе и это приводит к тому, что почти всегда имеются различия между поставленной и решаемой задачей. Чтобы они были несущественными, формулировка задачи должна корректироваться в процессе ее решения. Изменение в основном будут касаться частного плана сформулированной задачи.

Особенностью выделения объекта как системы из окружающей среды является то, что необходимо выбрать такие его элементы, деятельность или свойства которых проявляются в области исследования данного объекта.

Необходимость выявления (либо создания) той или иной связи определяется степенью ее воздействия на исследуемые характеристики: должны оставляться те, которые оказывают немаловажное воздействие. В тех случаях, когда связи неясны, необходимо укрупнить структуру системы до известных уровней и проводить исследования в целях последующего углубления детализации до необходимого уровня. Не должны вводиться в структуру системы элементы, не имеющие связей с другими.

При этом подходе любая система, объект рассматривается как совокупность взаимосвязанный и взаимодействующих элементов, имеющая вход, связи с внешней средой, выход, цель и обратную связь.

При проведении исследования системы управления, системный подход предусматривает рассмотрение организаций как открытой многоцелевой системы, имеющей определённые рамки, взаимодействующие между собой, внутреннюю и внешнюю среды, внешние и внутренние цели, подцели каждой из подсистем, стратегии достижения целей и т.д.

При этом изменение в одном из элементов любой системы вызывает изменение в других элементах и подсистемах, что основывается на диалектическом подходе и взаимосвязи и взаимообусловленности всех явлений в природе и обществе.

Системный подход предусматривает изучение всей совокупности параметров и показателей функционирования системы в динамике, что требует исследования внутриорганизационных процессов адаптации, саморегулирования, самоактуализации, прогнозирования, планирования, координации, принятия решений и т.д.

Системный подход рассматривает исследование того или иного объекта как систему целостного комплекса взаимосвязанных и взаимодействующих элементов в единстве со средой, в которой он находится. Одним из важнейших направлений, составляющих методологическую базу исследования для относительно сложных систем управления, является системный анализ. Его применение актуально для таких задач, как анализ и совершенствование системы управления при реструктуризации организаций, диверсификации производства, технического перевооружения и других задач, которые постоянно возникают в условиях рынка, и значит динамики внешней среды. Особенностью системного анализа является сочетание в нём различных методов анализа с общей теорией систем, исследованием операций, техническими и программными средствами управления.

Исследование операций как научное направление использует математическое моделирование процессов и явлений. Использование методов исследования операций в рамках системного подхода особенно целесообразно при изучении организационных систем для принятия оптимальных решений. Из сказанного следует вывод: установление внутренней структуры не является операцией только начального этапа исследования, она будет уточняться и изменяться по мере проведения исследований. Этот процесс отличает сложные системы от простых, в которых элементы и связи между ними не является операцией только начального этапа исследования, она будет уточняться и изменяться по мере проведения исследований. Этот процесс отличает сложные системы от простых, в которых элементы и связи между ними не изменяются в течение всего цикла исследования.

В любой системе каждый элемент ее структуры функционирует исходя из некоторой своей цели. При ее выявлении (или постановке) следует руководствоваться требованием подчиненности общей цели системы. Здесь следует отметить, что иногда частные цели элементов не всегда согласуются с конечными целями самой системы.

Сложные системы, как правило, исследуются на моделях. Целью моделирования является определение реакций системы на воздействия, границы функционирования системы, эффективность алгоритмов управления. Модель должна допускать возможность вариаций изменения количества элементов и связей между ними с целью исследования различных вариантов построения системы. Процесс исследования сложных систем носит итеративный характер. И число возможных приближений зависит от априорных знаний о системе и жесткости требований к точности получаемых результатов.

На основе проведенных исследований вырабатываются рекомендации:

по характеру взаимодействия между системой и окружающей средой;

структуре системы, видам организации и типам связей между элементами;

закону управления системой.

Основная практическая задача системного подхода в исследовании систем управления состоит в том, чтоб, обнаружив и описав сложность, доказать также дополнительные физически реализуемые связи, которые бы, будучи наложенными на сложную систему управления, сделали ее управляемой в требуемых пределах, сохранив при этом такие области самостоятельности, которые способствуют повышению эффективности системы.

Включенные новые обратные связи должны увеличить благоприятные и ослабить неблагоприятные тенденции поведения системы управления, сохранив и укрепив ее целенаправленность, однако при этом ориентируя ее на интересы надсистемы.

Одесский национальный политехнический университет

Кафедра философии и методологии науки

Системный подход в науке и технике

(реферат)

Козырев Д.С. аспирант кафедры ТЭС и ЭТ

Тема диссертации: «комбинированные системы энергоснабжения на основе альтернативных энергоресурсов»

Научный руководитель проф. Баласанян Г.А.

Одесса 2011

Введение3

1 Понятие «система» и «системный подход»5

2 Онтологический смысл понятия «система»8

3 Гносеологический смысл понятия «система»10

4 Разработка сущности системы в естественных науках12

5 «Система» и «системный подход» в наше время14

Заключение26

Литература29

Введение

Прошло более полувека системного движения, инициированного Л. фон Берталанфи. За это время идеи системности, понятие системы и системный подход получили всеобщее признание и широкое распространение. Созданы многочисленные системные концепции.

Пристальный анализ показывает, что множество рассматриваемых в системном дви­жении вопросов принадлежит не только науке, типа общей теории систем, но охватывают обширную область научного познания как такового. Системное движение затронуло все аспекты научной деятельности, а в его защиту выдвигается все большее число аргументов.

В основе системного подхода, как методологии научного познания, лежит исследование объектов как систем. Системный подход способствует адекватному и эффективному раскрытию сущности проблем и успешному их решению в различных областях науки и техники.

Системный подход направлен на выявление многообразных типов связи сложного объекта и сведения их в единую теоретическую картину.

В различных областях науки центральное место начинают занимать проблемы организации и функционирования сложных объектов, изучение которых без учета всех аспектов их функционирования и взаимодействия с остальными объектами и системами просто немыслимо. Более того, многие из таких объектов представляют сложное объединение различных подсистем, каждая из которых в свою очередь тоже является сложным объектом.

Системный подход не существует в виде строгих методологических концепций. Он выполняет свои эвристические (творческие) функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответственном ориентировании конкретных исследований.

Цель данной работы – попытаться показать, как важен системный подход в науке и технике. Преимуществами данного метода, прежде всего, является то, что он расширяет область познания по сравнению с той, что существовала раньше. Системный подход, основываясь на поиске механизмов целостности объекта и выявления технологии его связей, позволяет по-новому объяснить сущность многих вещей. Широта принципов и основных понятий системного подхода ставит их в тесную связь с другими методологическими направлениями современной науки.

Необходимо также попытаться определиться с понятиями «система», «системный подход». Разобраться с утверждением, что системы представляют собой комплексы, которые можно синтезировать и оценивать. Я надеюсь что полученные мной знания, помогут мне в решении научных и практических задач, которые я намерен ставить в своей диссертации. Поскольку связь темы данного реферата с темой моей будущей научной работой очевидна. Мне предстоит спроектировать комбинированную систему энергоснабжения, которая будет основываться на альтернативных энергоресурсах. В свою очередь каждый элемент этой схемы (когенерационная установка, индивидуальный тепловой пункт, тепловой насос, ветроустановка, солнечный коллектор и пр.) также является довольно непростой системой.

1. Понятие «система» и «системный подход»

Как указано выше,  в настоящее время системный подход используется практически во всех областях науки и техники: кибернетике, для анализа различных биологических систем и систем воздействия человека на природу, для построения систем управления транспортом, космическими полетами, различных систем организации и управления производством, теории построения информационных систем, во множестве других, и даже в психологии.

Биология явилась одной из первых наук, в которой объекты исследования начали рассматриваться как системы. Системный подход в биологии предполагает иерархическое построение, где элементы - система (подсистема), которая взаимодействует с другими системами в составе большой системы (надсистемы). При этом последовательность изменений большой системы основывается на закономерностях в иерархически соподчи­ненной структуре, где «причинно-следственные связи прокатываются сверху вниз, задавая существенные свойства нижестоящим». Иными словами, исследуется все многообразие связей в живой природе, при этом на каждом уровне биологической организации выделяются свои особые ведущие связи. Представление о биологических объектах как о системах позволяет по-новому подойти к некоторым проблемам, таким как развитие некоторых аспектов проблемы взаимоотношения особи с окружающей средой, а также дает толчок неодарвиновской концепции, обозначаемой иногда как макроэволюция.

Если обратиться к социальной философии, то и здесь анализ основных проблем данной области приводит к вопросам об обществе как целостности, а точнее,  об его системности, о критериях членения исторической действительности, об элементах общества как системы.

Популярности системного подхода способствует стремительное увеличение числа разработок во всех областях науки и техники, когда исследователь, используя стандартные методы исследования и анализа физически не способен справиться с таким объемом информации. Отсюда следует вывод, что только используя системный принцип можно разобраться в логических связях между отдельными фактами, и только этот принцип позволит более успешно и качественно проектировать новые исследования.

При этом важность понятия «система» очень велика в современной философии, науке и технике. Наряду с этим в последнее время все больше возрастает потребность в выработке единого подхода к разнообразным системным исследованиям в современном научном познании. Большинство исследователей наверняка осознает, что все же существует некоторая реальная общность в этом многообразии направлений, которая должна вытекать из единого по­нимания системы. Однако реальность как раз состоит в том, что единого понимания системы до сих пор не выработано.

Если рассмотреть историю разработки определений понятия «система», можно увидеть, что каждое из них вскрывает все новую сторону из его богатого содержания. При этом выделяются две основные группы определений. Одна тяготеет к философскому осмы­слению понятия система, другая группа определений осно­вывается на практическом использовании системной методологии и тяготеет к выработке общенаучного понятия системы.

Работы в области теоретических основ системных исследований охватывают такие проблемы как:

    онтологические основания системных исследований объектов мира, системность как сущность мира;

    гносеологические основания системных исследований, системные принципы и уста­новки теории познания;

    методологические установления системного познания.

Смешение этих трех аспектов подчас создает ощущение противоречивости работ разных авторов. Этим же определяется противоречивость и множественность определений самого понятия «система». Одни авторы разрабатывают его в онтологическом смысле, другие - в гносеологическом, причем в разных аспектах гносеологии, третьи - в методологическом.

Вторая характерная черта системной проблематики состоит в том, что на всем протя­жении развития философии и науки в разработке и применении понятия «система» явно выделяются три направления: одно связано с использованием термина «система» и нестро­гим его толкованием: другое - с разработкой сущности системной концепции, однако, как правило, без использования этого термина: третье - с попыткой синтеза концепции системности с понятием «система» в его строгом определении.

При этом исторически всегда возникала двойственность толкования в зависимости от того с онтологических или гносеологических позиций ведется рассмотрение. Поэтому исходным основанием для выработки единой системной концепции, в том числе и понятия «система», является прежде всего разделение всех вопросов в историческом рассмотрении по принципу их принадлежности к онтологическим, гносеологическим и методологическим основаниям.

1.2. Онтологический смысл понятия «система»

При описании реальности в Древней Греции и фактически до XIX в. в науке не было четкого разделения между самой реальностью и ее идеальным, мысленным, рациональным представлением. Онтологический аспект реальности и гносеологический аспект знания об этой реальности отождествлялись в смысле абсолютного соответствия. Поэтому весьма длительное применение термина «система» имело ярко выраженный онтологический смысл.

В Древней Греции значение этого слова было связано, прежде всего, с социально-бытовой деятельностью и применялось в значении устройство, организация, союз, строй и т.п.. Далее этот же термин переносится на естественные объекты. Вселенную, филологические и музыкальные сочетания и т.д.

Важно то, что формирование понятия «система» из термина «система» идет через осознание целостности и расчлененности как естественных, так и искусственных объектов. Это и получило выражение в толковании системы как «целого, составленного из частей».

Фактически не прерываясь, эта линия осознания систем как целостных и одновременно расчлененных фрагментов реального мира идет через Новое время, философию Р. Декарта и Б. Спинозы, французских материалистов, естест­вознание XIX в., являясь следствием пространственно-механического видения мира, когда все другие формы реальности (свет, электромагнитные поля) рассматривались лишь как внешнее проявление пространственно-механических свойств этой реальности.

Фактически данный подход предусматривает некую первичную расчлененность целого, составленного в свою очередь из целостностей, разделенных (пространственно) уже самой природой и находящихся во взаимодействии. В этом же смысле широко используется термин «система» и в наши дни. Именно за этим пониманием системы закрепился термин материальная система как целостная совокупность мате­риальных объектов.

Другое направление онтологической линии предусматривает использование термина «система» для обозначения целостности, определяемой некоторой организующей общностью этого целого.

В онтологическом подходе можно выделить два направления: система как совокупность объектов и система как совокупность свойств.

В целом использование термина «система» в онтологическом аспекте малопродуктивно для дальнейшего изучения объекта. Онтологическая линия связала понимание системы с понятием «вещь», будь то «вещь органичная», либо «вещь, составленная из вещей». Главным недостатком в онтологической линии понимания системы является отождествление понятия «система» с объектом или просто с фрагментом действительности. На самом деле использование термина «система» применительно к материальному объекту некорректно, так как всякий фрагмент действительности имеет бесконечное число проявлений и его познание распадается на множество сторон. Поэтому даже для природно расчлененного объекта мы можем дать только общее указание на факт наличия взаимодействий, без их конкретизации, так как не выделено, какие свойства объекта участвуют во взаимодей­ствиях.

Онтологическое понимание системы как объекта не позволяет перейти к процессу познания, так как не дает методологии исследования. В связи с этим, понимание си­стемы исключительно в представленном аспекте ошибочно.

1.3. Гносеологический смысл понятия «система»

У истоков гносеологической линии находится древнегреческая философия и наука. Данное направление дало две ветви в разработке понимания системы. Одна из них связана с трактовкой системности самого знания, сначала философского, затем научного. Другая ветвь была связана с разработкой понятий «закон» и «закономерность» как ядра научного знания.

Принципы системности знания разрабатывались еще в древнегреческой философии и науке. По сути, уже Евклид строил свою геометрию как систему, и именно такое изложение ей придал Платон. Однако применительно к знанию термин «система» античной фи­лософией и наукой не использовался.

Хотя термин «система» был упомянут уже в 1600 г., никто из ученых того времени его не использовал. Серьезная разработка проблемы системности знания с осмыслением понятия «система» начинается лишь с XVIII века. В то время были выявлены три важнейших требования к системности знания, а значит, и признака системы:

    полноту исходных оснований (элементов, из которых выводятся остальные знания);

    выводимость (определяемость) знаний;

    целостность построенного знания.

Причем под системой знания это направление имело в виду не зна­ния о свойствах и отношениях реальности (все попытки онтологического понимания си­стемы забыты и исключены из рассмотрения), а как определенную форму организации знаний.

Гегель, при разработке универсальной системы знания и универсальной системы мира с позиций объективного идеализма, преодолел такое разграничение онтологической и гносеологической линий. В целом к концу XIX в. полностью отбрасываются онтологические основания познания, причем система порой рассматривается как результат деятельности субъекта познания.

Однако понятие «система» так и не было сформулировано потому, что знание в целом, как и мир в целом, представляют собой бесконечный объект, принципиально не соотносимый с по­нятием «система», что являлось способом конечного представления бесконечно сложного объекта.

В результате развития гносеологического направления с понятием «си­стема» оказались прочно связаны такие признаки, как целое, полнота и выводимость. Одновременно был подготовлен отход от понимания системы как глобального охвата мира или знания. Проблема системности знания постепенно сужается и трансформируется в проблему системности теорий, проблему полноты формальных теорий.

4 Разработка сущности системы в естественных науках

Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина.

С момента зарождения цель науки состояла в нахождении зависимостей между явлениями, вещами и их свойствами. Начиная с математики Пифагора, через Г. Галилея и И. Ньютона в науке формируется понимание того, что установление всякой закономерно­сти включает следующие шаги:

    нахождение той совокупности свойств, которые будут необходимы и достаточны, чтобы образовать некоторую взаимосвязь, закономерность;

    поиск вида математической зависимости между этими свойствами;

    установление повторяемости, необходимости этой закономерности.

Поиск того свойства, которое должно войти в закономерность, часто длился веками (если не сказать - тысячелетиями). Одновременно с поиском закономерностей всегда возникал вопрос об основаниях этих закономерностей. Со времен Аристотеля зависимость должна была иметь причинное основание, однако еще теоремы Пифагора содержали другое основание зависимости - взаимоотношение, взаимообусловленность величин, не содержащую причинного смысла.

Эта совокупность вошедших в закономерность свойств образует некоторую единую, целостную группу именно в силу того, что она обладает свойством вести себя детерминировано. Но тогда эта группа свойств обладает признаками системы и является не чем иным, как «системой свойств» - это название ей и будет дано в XX в. Только термин «система уравнений» давно и прочно вошел в научное употребление. Осознание всякой выделенной зависимости как системы свойств наступает при попытках дать определение понятию «система». Дж. Клир определяет систему как совокупность переменных, а в естественных науках традиционным становится определение динамической системы как системы описывающих ее уравнений.

Важно, что в рамках данного направления разработан важнейший признак системы – признак самоопределяемости, самодетерминации входящего в закономерность набора свойств.

Таким образом, в результате развития естественных наук были выработаны такие важнейшие признаки системы как полнота набора свойств и самодетерминированность этого набора.

5. ОДИН ПОДХОД К ОБЩЕЙ ТЕОРИИ СИСТЕМ.

Гносеологическая линия истолкования системности знания, значительно разработав смысл понятия «система» и ряд его важнейших признаков, не вышла на путь понимания си­стемности самого объекта познания. Напротив, укрепляется положение, что система знания в любых дисциплинах образуется путем логического выведения, наподобие математики, что мы имеем дело с системой высказываний, имеющей гипотетико-дедуктивную основу. Это привело с учетом успехов математики к тому, что природа стала заменяться математи­ческими моделями. Возможности математизации определяли как выбор объекта исследо­вания, так и степень идеализации при решении задач.

Выходом из сложившейся ситуации явилась концепция Л. фон Берталанфи, с общей теории систем которого началось обсуждение мно­гообразия свойств «органичных целых». Систем­ное движение стало по сути своей онтологическим осмыслением свойств и качеств на разных уровнях организации и типов обеспечивающих их отношении, а Б.С. Флейшман положил в основу системологии упорядочение принципов усложняющегося поведения: от вещественно-энергетического баланса через гомеостаз к целенаправленности и перспективной активности.

Таким образом, происходит поворот к стремлению рассматривать объект во всей сложности, множественности свойств, качеств и их взаимосвязей. Соответственно образуется ветвь онтологических определений системы, которые трак­туют ее как объект реальности, наделенный определенными «системными» свойствами, как целостность, обладающую некоторой организующей общностью этого целого. Посте­пенно формируется употребление понятия «система» как сложного объекта, органи­зованной сложности. Одновременно с этим «математизируемость» перестает быть тем фильтром, который предельно упрощал задачу. Дж. Клир видит принципиальное отличие между классическими науками и «наукой о системах» в том, что теория систем формирует предмет исследования во всей полноте его естественных проявлений, не приспосабливая к возможностям формального аппарата.

Впервые обсуждение проблем системности явилось саморефлексией системных кон­цепций науки. Начинаются небывалые по размаху попытки осознать сущность общей теории систем, системного подхода, системного анализа и т.д. и прежде всего - выработать само понятие «система». При этом в отличие от многовекового интуитивного использования главной целью становятся методологические установления, которые должны вытекать из понятия «система».

В 1959 г. в Кейсовском технологическом институте (Кливледнд шт.Огайо) был создан центр исследования систем или, точнее, системных исследований, объединивший отделы исследования операций, вычислительной техники и автоматики. Перед этим научным коллективом, который возглавил известный специалист по автоматике проф. Д.Экман (трагически погибший в результате автомобильной катастрофы в 1962 г.), были поставлены весьма широкие и сложные задачи. Центр должен был приступить к разработке качественно новых методов анализа, синтеза и изучения сложных или больших систем, создать методологию системных исследований, способствовать развитию общей теории больших систем.

Очевидно, что только для формирования конкретной программы работы центра нужно было приложить немалые усилия. С этой целью весной 1960 г. был созван первый симпозиум под девизом «Системы – исследование и синтез», на котором известные учёные, представляющие различные дисциплины, выдвинули ряд проблем в области системных исследований. Труды этого симпозиума были изданы в 1961 г.

В 1963 г. состоялся второй симпозиум, проходивший под девизом «Взгляды на общую теорию систем».

Один из докладчиков второго симпозиума был У.Чёрчмен, который выступил со своими аксиомами, отражающие его взгляды на общую теорию систем.

Аксиоматический подход Чёрчмена к об­щей теории систем показался мне достаточно интересным и я решил его изложить.

Автор убеждён, что все интересующиеся общей теорией систем стремятся рассмотреть все возможные подходы к этому направлению, ибо в противном слу­чае это увлекательное теоретическое начинание поро­дило бы лишь ничтожный замкнутый кружок бес­плодных схоластов.

Цель предлагаемых аксиом заключается в посту­лировании следующих утверждений: 1) системы пред­ставляют собой комплексы, которые можно синтези­ровать и оценивать; 2) прилагательное «общая» в выражении «общая теория систем» относится как - к «теории», так и к самим «системам». Аксиомы формулируются следующим образом.

1.Системы синтезируются и конструируются. Не­обходимым условием синтеза является способность к оценке. Следовательно, системы можно оценивать и предлагаемые альтернативные варианты можно срав­нивать с исходным с точки зрения того, являются ли они лучше или хуже этого варианта. Если выразить эту мысль более точно, то можно задать целевую функцию для оценки качества альтернативных систем на которую наложена система ограничений, представляющих в свою очередь определенные цели, которых стремится достичь конструктор.

«Конструирование» включает практическую реализацию синтезированной системы, а также изменение структуры и параметров на основе накопленного опыта.

При такой интерпретации систем из рассмотрения исключаются астрономические, механические и тому подобные системы. В таком случае системы синтезируются для описания событий и эти системы отвечают первой аксиоме, так как их можно синтезировать и конструировать.

2. Системы синтезируются по частям. Конструктор разбивает общую задачу синтеза на множество частных задач, решение каждой из которых определяет составную часть более крупной системы.

3. Компоненты систем также являются системами. Это означает, что каждый компонент можно оценивать и разрабатывать в указанном выше смысле. Это означает также, что каждый компонент можно рассматривать как состоящий из более мелких компонентов и что процесс такого расчленения логически бесконечен, хотя на практике конструктор останавливается по своему усмотрению на каком-то уровне, считая компоненты, соответствующие этому уровню, «элементарными блоками системы».

4. Система замкнута, если её оценка не зависит от характеристик окружающей её среды, которая относится к определённому классу сред. Смысл этой аксиомы сводится к тому, что конструктор стремится получить некоторую устойчивую систему сохраняющую свои свойства даже при изменении условий окружающей среды. Если конструктор считает, что возможные изменения в окружающей среде способны ухудшить функционирование системы, то в ходе разработки он будет стремится синтезировать такую систему, которая устойчива к этим возмущениям.

Когда можно полагать, что все возможности такого рода в достаточной мере учтены, конструктор считает со­зданную систему замкнутой. Как правило, он и не пытается учесть все возможные изменения в окру­жающей среде. Если же он встал бы на эту точку зрения, то в таком случае справедлива аксиома:

5. Обобщенная система есть замкнутая система, остающаяся замкнутой во всех возможных средах. Иными словами, обобщенная система характеризует­ся абсолютной устойчивостью к изменениям окружаю­щей среды.

Вопросы, возникающие в связи с обобщеннымисистемами, напоминают известные философские про­блемы. Прежде всего, сколько элементов содержится в классе обобщенных систем? Если ответить на этот вопрос - «ни одного», мы приходим к философскому анархизму. При ответе-«один» приходим к фило­софскому монизму, соответствующему, например, уче­нию стоиков, Спинозы, Лейбница и некоторых других философов. Если же ответ гласит - «много», то мы сталкиваемся с философским плюрализмом. Далее возникает вопрос, является ли обобщенная система добром или злом. Автор считает, что кон­структоры систем должны четко высказаться в том смысле, что системы можно создавать как во имя добра, так и во имя зла. Нет никаких разумных осно­ваний проводить различия между задачами построе­ния систем, отвечающих научным критериям совер­шенства, и задачами создания систем, несущих в себе добро и зло. При построении систем на их создателя в равной мере возложена ответственность заисполь­зование всего арсенала научных знаний и технических средств, а также приемлемых этических критериев при построении системы. Тем не менее могут возник­нуть опасения. Я считаю, что если человеку когда-либо удастся создать некоторую подлинно замкнутую обобщенную систему, то в итоге она явится не добром, а злом. Следующие две аксиомы выражают убеждения у. Чёрчмена по этим вопросам.

6. Существует одна и только одна обобщённая система (монизм).

7. Эта обобщенная система оптимальна.

Наиболее общей задачей синтеза систем является приближение к некоторой обобщенной системе. Ины­ми словами:

8. Общая теория систем есть, методология поиска обобщенной системы. И в заключение:

9. Поиск обобщенной системы становится все бо­лее затруднительным с течением времени и никогда не завершится (реализм).

ЗАКЛЮЧЕНИЕ

Системное осмысление реальности, системный подход к теоретической и практической деятельности – является одним из прин­ципов диалектики, так же как и категория «система»  это одна из категорий диалектического материализма. Се­годня понятие «система» и принцип системности стали иг­рать важную роль в жизнедеятельности человека. Дело в том, что общее прогрессивное движение науки, знания про­исходит неравномерно. Всегда выделяются определенные участки, развивающиеся быстрее других, возникают ситуа­ции, требующие более глубокого и детального осмысления, а следовательно, и особого подхода к исследованию нового состояния науки. Поэтому выдвижение и усиленная разра­ботка отдельных моментов диалектического метода, способ­ствующих более глубокому проникновению в объективную реальность, вполне закономерное явление. Метод познания и результаты познания взаимосвязаны, воздействуют друг на друга: метод познания способствует более глубокому проникновению в суть вещей и явлений; в свою очередь, на­копленные знания совершенствуют метод.

В соответствии с текущими практическими интересами человечества меняется познавательное значение принципов и категорий. Подобный процесс отчетливо наблюдается когда под влиянием практических потреб­ностей происходит усиленная разработка системных идей.

Системный принцип в настоящее время, выступает в качестве элемента диалек­тического метода как системы и выполняет свою специфи­ческую функцию в познании наряду с другими элементами диалектического метода.

В настоящее время принцип системности – необхо­димое методологическое условие, требование любого иссле­дования и практики. Одной из его фундаментальных харак­теристик является понятие системности бытия, а тем са­мым и единства наиболее общих законов его развития.

В ходе научно-технической революции проблема создания больших систем и управления этими системами стала центральной проблемой как в самой науке, так и в развитии общества. Всё народное хозяйство в целом, отдельные его отрасли и звенья, промышленные предприятия и научно-исследовательские учреждения, технические объекты самой различной природы, программы разработки и осуществления крупных проектов, короче говоря, бесчисленное разнообразие можно и часто просто необходимо рассматривать как большие системы.

Дело в том, что при изучении больших систем приходится анализировать огромное богатство связей элементов и явлений, подвергать их всестороннему исследованию, учитывать взаимодействие частей и целого, неопределённость поведения системы, её связи и взаимодействие с окружающей средой. Системы этого класса выступают, как правило, в виде сложных человеко-машинных систем, для синтеза и управления которыми необходимо привлечение всего арсенала методов и средств самых различных отраслей науки и техники. Увы, этот на первый взгляд неисчерпаемый арсенал часто оказывается недостаточным для решения системных задач на том уровне, которого требуют нужды современного общества.

Проблема осложняется ещё и тем, что в отличие от традиционных постановок задач в точных науках, при изучении больших систем, возникают чрезвычайно сложные задачи научного обоснования и формирования таких критериев, а также согласования критерия функционирования всей системы с критериями для отдельных её частей, которые в свою очередь, как правило, являются достаточно сложными системами.

ЛИТЕРАТУРА

    Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4

    Заварзин Г.А. Индивидуалистический и системный подход в биологии // Вопросы философии, 1999, №4.

    Философия: Учебн. Пособие для студентов вузов. / В.Ф. Берков, П.А. Водопьянов, Е.З. Волчек и др.; под общ. ред. Ю.А. Харина. Мн., 2000.

    Уемов А.И. Системный подход и общая теория систем. – М., 1978.

    Садовский В. Н. Основания общей теории систем. М., 1974

    Клир Дж. Системология. Автоматизация решения системных задач. М., 1990.

    Исследование систем. Материалы всесоюзного симпозиума. М.Д. Ахундов - М., 1971.