Каким числом рациональным или иррациональным является. Иррациональные числа

Иррациональные числа известны людям с глубокой древности. Еще за несколько веков до нашей эры индийский математик Манава выяснил, что квадратные корни некоторых чисел (например, 2) невозможно выразить явно.

Данная статья является своего рода вводным уроком в тему "Иррациональные числа". Приведем определение и примеры иррациональных чисел с пояснением, а также выясним, как определить, является ли данное число иррациональным.

Yandex.RTB R-A-339285-1

Иррациональные числа. Определение

Само название "иррациональные числа" как бы подсказывает нам определение. Иррациональное число - это действительное число, которое не является рациональным. Другими словами, такое число нельзя представить в виде дроби m n , где m - целое, а n - натуральное число.

Определение. Иррациональные числа

Иррациональные числа - это такие числа, которые в десятичной форме записи представляют собой бесконечные непериодические десятичные дроби.

Все рациональные числа можно представить в виде обыкновенной дроби. Это касается и целых чисел (например, 12, –6, 0), и конечных десятичных дробей (например, 0,5; –3,8921) , и бесконечных периодических десятичных дробей (например, 0,11(23); –3,(87)).

Однако бесконечные непериодические десятичные дроби представить в виде обыкновенных дробей невозможно. Они то и являются иррациональными числами (то есть нерациональными). Примером такого числа является число π, которое приблизительно равно 3,14. Однако чему оно точно равно, определить нельзя, так как после цифры 4 идет бесконечный ряд других цифр, в которых нельзя выделить повторяющиеся периоды. При этом, хотя число π нельзя точно выразить, у него есть конкретный геометрический смысл. Число π - это отношение длины любой окружности к длине ее диаметра. Таким образом иррациональные числа действительно существуют в природе, также как рациональные.

Другим примером иррациональных чисел могут служить квадратные корни из положительных чисел. Извлечение корней из одних чисел дает рациональные значения, из других - иррациональное. Например, √4 = 2, т. е. корень из 4 - это рациональное число. А вот √2, √5, √7 и многие другие дают в результате иррациональные числа, т. е. их можно извлечь лишь с приближением, округлив до определенного знака после запятой. При этом дробь получается непериодическая. То есть нельзя точно и определенно сказать, чему равен корень из этих чисел.

Так √5 - это число лежащее между числами 2 и 3, так как √4 = 2, а √9 = 3. Можно также сделать вывод, что √5 ближе к 2, чем к 3, т. к. √4 ближе к √5, чем √9 к √5. Действительно, √5 ≈ 2,23 или √5 ≈ 2,24.

Иррациональные числа получаются также в других вычислениях (а не только при извлечении корней), бывают отрицательными.

По отношению к иррациональным числам можно сказать, что какой бы единичный отрезок мы не взяли для измерения длины, выраженной таким числом, мы не сможем ее определенно измерить.

В арифметических операциях иррациональные числа могут участвовать наряду с рациональными. При этом есть ряд закономерностей. Например, если в арифметической операции участвуют только рациональные числа, то в результате получается всегда рациональное число. Если же в операции участвуют только иррациональные, то сказать однозначно, получится ли рациональное или иррациональное число, нельзя.

Например, если умножить два иррациональных числа √2 * √2, то получится 2 - это рациональное число. С другой стороны, √2 * √3 = √6 - это иррациональное число.

Если в арифметической операции участвует рациональное и иррациональное числа, то получится иррациональный результат. Например, 1 + 3,14... = 4,14... ; √17 – 4.

Почему √17 – 4 - это иррациональное число? Представим, что получится рациональное число x. Тогда √17 = x + 4. Но x + 4 - это рациональное число, т. к. мы предположили, что x рациональное. Число 4 тоже рациональное, значит x + 4 рационально. Однако рациональное число не может быть равно иррациональному √17. Поэтому предположение, что √17 – 4 дает рациональный результат неверно. Результат арифметической операции будет иррациональным.

Однако из этого правила есть исключение. Если мы умножаем иррациональное число на 0, то получится рациональное число 0.

Какие числа являются иррациональными? Иррациональное число — это не рациональное вещественное число, т.е. оно не может быть представлено как дробь (как отношение двух целых чисел), где m — целое число, n — натуральное число . Иррациональное число можно представить как бесконечную непериодическую десятичную дробь.

Иррациональное число не может иметь точного значения. Только в формате 3,333333…. Например , квадратный корень из двух - является числом иррациональным.

Какое число иррациональное? Иррациональным числом (в отличии от рациональных) называется бесконечная десятичная непериодическая дробь.

Множество иррациональных чисел зачастую обозначают заглавной латинской буквой в полужирном начертании без заливки. Т.о.:

Т.е. множество иррациональных чисел это разность множеств вещественных и рациональных чисел.

Свойства иррациональных чисел.

  • Сумма 2-х неотрицательных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
  • Всякое вещественное трансцендентное число - это иррациональное число.
  • Все иррациональные числа являются или алгебраическими, или трансцендентными.
  • Множество иррациональных чисел везде плотно на числовой прямой: меж каждой парой чисел есть иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел бесконечно, является множеством 2-й категории.
  • Результатом каждой арифметической операции с рациональными числами (кроме, деления на 0) является рациональные числа. Результатом арифметических операций над иррациональными числами может стать как рациональное, так и иррациональное число.
  • Сумма рационального и иррационального чисел всегда будет иррациональным числом.
  • Сумма иррациональных чисел может быть рациональным числом. Например, пусть x иррациональное, тогда y=x*(-1) тоже иррациональное; x+y=0, а число 0 рациональное (если, например, сложить корень любой степени из 7 и минус корень такой же степени из семи, то получим рациональное число 0).

Иррациональные числа, примеры.

γ ζ (3) — ρ — √2 — √3 — √5 — φ δs α e π δ

А свои корни они извлекли из латинского слова «ratio», что означает «разум». Исходя из дословного перевода:

  • Рациональное число — это «разумное число».
  • Иррациональное число, соответственно, «неразумное число».

Общее понятие рационального числа

Рациональным числом считается то число, которое можно записать в виде:

  1. Обыкновенной положительной дроби.
  2. Отрицательной обыкновенной дроби.
  3. В виде числа нуль (0).

Иными словами, к рациональному число подойдет следующие определения:

  • Любое натуральное число является по своей сути рациональным, так как любое натуральное число можно представить в виде обыкновенной дроби.
  • Любое целое число, включительно число нуль, так как любое целое число можно записать как ввиде положительной обыкновенной дроби, в виде отрицательной обыкновенной дроби, так и ввиде числа нуль.
  • Любая обыкновенная дробь, и здесь не имеет значение положительная она или отрицательная, тоже напрямую подходит к определению рационального числа.
  • Так же в определение можно отнести и смешанное число, конечную десятичную дробь либо бесконечную периодическую дробь.

Примеры рационального числа

Рассмотрим примеры рациональных чисел:

  • Натуральные числа — «4», «202», «200».
  • Целые числа — «-36», «0», «42».
  • Обыкновенные дроби.

Из вышеперечисленных примеров совершенно очевидно, что рациональные числа могут быть как положительными так и отрицательными . Естественно, число 0 (нуль), которое тоже в свою очередь является рациональным числом, в тоже время не относится к категории положительного или отрицательного числа.

Отсюда, хотелось бы напомнить общеобразовательную программу с помощью следующего определения: «Рациональными числами» — называются те числа, которые можно записать в виде дроби х/у, где х (числитель) — целое число, а у (знаменатель) — натуральное число.

Общее понятие и определение иррационального числа

Помимо «рациональных чисел» нам известны и так называемые «иррациональные числа». Вкратце попробуем дать определение данным числам.

Еще древние математики, желая вычислить диагональ квадрата по его сторонам, узнали о существовании иррационального числа.
Исходя из определения о рациональных числах, можно выстроить логическую цепь и дать определение иррациональному числу.
Итак, по сути, те действительные числа, которые не являются рациональными, элементарно и есть иррациональными числами.
Десятичные дроби же, выражающие иррациональные числа, не периодичны и бесконечны.

Примеры иррационального числа

Рассмотрим для наглядности небольшой пример иррационально числа. Как мы уже поняли, бесконечные десятичные непериодические дроби называются иррациональными, к примеру:

  • Число «-5,020020002… (прекрасно видно, что двойки разделены последовательностью из одного, двух, трех и т.д. нулей)
  • Число «7,040044000444… (здесь ясно, что число четверок и количество нулей каждый раз цепочкой увеличивается на единицу).
  • Всем известное число Пи (3,1415…). Да, да — оно тоже является иррациональным.

Вообще все действительные числа являются как рациональными так и иррациональными. Говоря простыми словами, иррациональное число нельзя представить ввиде обыкновенной дроби х/у.

Общее заключение и краткое сравнение между числами

Мы рассмотрели каждое число по отдельности, осталось отличие между рациональным числом и иррациональным:

  1. Иррациональное число встречается при извлечении квадратного корня, при делении окружности на диаметр и т.д.
  2. Рациональное число представляет обыкновенную дробь.

Заключим нашу статью несколькими определениями:

  • Арифметическая операция, произведенная над рациональным числом, кроме деления на 0 (нуль), в конечном результате приведет тоже к рациональному числу.
  • Конечный результат же, при совершении арифметической операции над иррациональным числом, может привести как к рациональному так и к иррациональному значению.
  • Если же в арифметической операции принимают участие и те и другие числа (кроме деления или умножения на нуль), то результат нам выдаст иррациональное число.

Иррациона́льное число́ - это вещественное число , которое не является рациональным , то есть не может быть представлено в виде дроби , где - целые числа , . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби .

Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом: , т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Свойства

  • Всякое вещественное число может быть записано в виде бесконечной десятичной дроби , при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
  • Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим , либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно , является множеством второй категории .

Примеры

Иррациональные числа
- ζ(3) - √2 - √3 - √5 - - - - -

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где - целое число , а - натуральное число . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.