Современные лазеры презентация. Лазеры

Слайд 2

Что такое лазер?

Ла́зер (усиление света посредством вынужденного излучения) Лазер - источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул Лазер - источник света. По сравнению с другими источниками света лазер обладает рядом уникальных свойств, связанных с когерентностью и высокой направленностью его излучения

Слайд 3

Создание лазера

Создание Лазера (1960) и несколько ранее мазера(1955) послужило основой развития нового направления в физике и технике, называется квантовой электроникой. В 1964г. Советским физикам Н. Г. Басову, А. М. Прохорову и Американскому физику Ч. Таунсу за работы в области квантовой электроники присуждена Нобелевская премия по физике. Тем временем в лаборатории Николая Геннадьевича Басова разрабатываются мощные лазеры на кристаллах рубина и неодимовом стекле, создается мощный фотодиссоционный йодный лазер наносекундных импульсов. В 1968 году в лаборатории были получены первые нейтроны при лазерном облучении мишеней из дейтерированного лития. Результаты экспериментов послужили мощным стимулом для дальнейшего развития работ по лазерному термоядерному синтезу.

Слайд 4

Николай Геннадьевич Басов Александр Михайлович Прохоров

Слайд 5

Устройство лазера

Устройство лазера На схеме обозначены: 1 - активная среда; 2 - энергия накачки лазера; 3 - непрозрачное зеркало; 4 - полупрозрачное зеркало; 5 - лазерный луч. Все лазеры состоят из трёх основных частей: активной (рабочей) среды; системы накачки (источник энергии); оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя). Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Слайд 6

Лазер – это устройство, которое вырабатывает лазерное излучение. Лазерное излучение имеет большую мощность, чем обычный свет, потому что все его лучи имеют одинаковую длину волны и движутся вместе. Благодаря этому лазерные лучи можно сфокусировать, превратив с высокой точностью в узкий пучок. (Лучи обычного света состоят из нескольких длин волн, которые, выходя из источника света, распространяются во всех направлениях.) Лазерный луч можно сфокусировать на такой маленькой площади, что он будет способен сделать 200 отверстий на булавочной головке!

Слайд 7

Виды лазеров

Лазеры бывают: Газовые (аргоновые, гелий-неоновые, на монооксиде углерода и углекислом газе, эксимерные). Твердотельные (александритовые, рубиновые, кристаллические с иттербиевым легированием, алюмо-иттриевые, титан-сапфировые, микрочиповые). Полупроводниковые лазерные диоды (в указках, принтерах, CD/DVD).

Слайд 8

Применение лазеров

  • Слайд 9

    С помощью лазерных технологий стала возможна сварка, резка, сверление, закалка материалов без появления в них внутреннего напряжения, чего невозможно было достигнуть при механической обработке. Точность такой обработки достигает буквально микрометра, и лазеру без разницы, что именно он обрабатывает – металл или алмаз. В микроэлектронике предпочтительней не пайка соединений, а сварка, и луч лазера отлично справляется со своей задачей. Также существует лазерное охлаждение и намагничивание. Излучатель еще очень успешно применяют в термоядерном синтезе.

    Слайд 10

    Сегодня лазер незаменим также и в медицине. Он применяется в хирургии, офтальмологии, гинекологии, онкологии и косметической хирургии. Например, при операциях на глазном яблоке лазер способен приваривать отслоившуюся сетчатку не травмируя сам глаз. Лазер может выжигать как доброкачественные, так и злокачественные опухоли. Также его успешно используют в стоматологии для отбеливания зубов и бескровной имплантации. И очень радует перспектива использования луча для остановки кровотечений у людей с малой свертываемостью крови. Астрономия с помощью лазера также смогла вынести на совершенно иной уровень качество своих исследований. Так, например, с помощью рубиновых лазеров ученые смогли более точно определять расстояние от Земли до других космических тел. Точность картографирования поверхности планет теперь составляет до 1,5 м. А с помощью полупроводниковых лазеров осуществляется связь со спутниками.

    Слайд 11

    Слайд 12

    Незаменим лазер при геодезических измерениях, а также при регистрации сейсмической активности коры Земли. В геофизике с высокой точностью определяют высоту облаков, исследуют такие явления, как турбулентность и инверсионные следыСлайд 16

    Лазеры окружают нас и в повседневной жизни. С их помощью мы прослушиваем компакт-диски, записываем данные, распечатываем информацию на принтерах. Кассиры в супермаркетах лазером считывают штрих-коды с продукции. С его помощью добавляют субтитры на экран, с лазерными указками преподаватели объясняют материал. А молодежь вечером восхищается на дискотеке феерическими лазерными шоу.

    Посмотреть все слайды

    Слайд 2

    Историческая справка Принцип действия лазера Свойства лазерного излучения Виды лазеров Применение лазеров

    Слайд 3

    Историческая справка

    В 1940г. российский физик В.А.Фабрикант указал на возможность использования явления вынужденного излучения для усиления электромагнитных волн. В 1954г. Российские ученые Н.Г.Басов и А.М.Прохоров и независимо от них амери-канский физик Ч.Таунс использовали явление индуцированного излучения для создания микроволнового генератора радиоволн с длиной волны 1,27 см («мазер»). В 1963г. Н.Г.Басков и А.М.Прохоров и Ч.Таунс были удостоены Нобелевской премии. В 1960г. Американскому ученому Т.Мейману удалось создать квантовый генератор индуцирующий излучение оптического диапазона. Новый генератор назвали «лазер».

    Слайд 4

    Принцип действия лазера

    На уровне 3 у атомов «время жизни» около 10-8с, после чего они самопроизвольно переходят в состояние 2 без излучения энергии. «Время жизни» на уровне 2 составляет 10-3 с. Создается «перенаселенность» этого уровня возбужденными атомами. Атомы, «перенаселившие» 2 уровень, самопроизвольно переходят на первый уровень с излучением большого количества энергии. В обычных условиях атомы находятся в низшем энергетиче-ском состоянии. За счет поглощения энергии волны часть атомов переходит в высшее энергетическое состояние (на 3 энергетический уровень).

    Слайд 5

    Свойства лазерного излучения

    Лазеры создают пучки света с малым углом расхождения (10-5 рад.). Свет, излучаемый лазером, монохроматичен, т.е. Имеет только одну длину волны, один цвет. Лазеры являются самыми мощными источниками света: сотни и тысячи ватт. Мощность излучения Солнца - 7·103Вт, а у некоторых лазеров – 1014Вт.

    Слайд 6

    Виды лазеров

    Рубиновый лазер Импульсная лампа с зеркаль- ным отражателем «накачивает» энергию в рубиновый стержень. В веществе стержня, возбужден- ном световой вспышкой, возникает лавина фотонов. Отражаясь в зеркалах, она усиливается и вырывается наружу лазерным лучом.

    Слайд 7

    Газовые лазеры Между зеркалами находится запаянная трубка с газом, который возбуждается электрическим током. Неон светится красным светом, криптон – желтым, аргон – синим.

    Слайд 8

    Газо-динамический лазер Похож на реактивный двигатель. В камере сгорания сжигается угарный газ с добавлением керо-сина или бензина, или спирта. В мощном газодинамическом лазере свет рождает струю раскаленного газа при давле-нии в десятки атмосфер. Проносясь между зеркалами, молекулы газа начинают отдавать энергию в виде световых квантов, мощность которых 150 - 200 кВт.

    Слайд 9

    Полупроводниковый лазер В полупроводниковом лазере излучает слой между двумя полупроводниками разного типа (p-типа, n-типа). Через этот слой – не толще листа бумаги – пропускают электрический ток, возбуждающий его атомы.

    Слайд 10

    Жидкостный лазер Жидкость с красителем в специальном сосуде устанавли-вается между зеркалами. Энергия молекулы красителя «накачивается» оптически с помощью газовых лазеров. В тяжелых молекулах органических красителей вынужден-ное излучение возникает сразу в широкой полосе длин волн. С помощью светофильтров выделяют свет одной длины волны.

    Слайд 11

    Применение лазеровЛазер режет, сваривает, кует, сверлит и т. д.

    Тонкую вольфрамовую проволоку для электри-ческих лампочек протя-гивают через отверстия в алмазах,пробитые лазер-ным лучом. Рубиновые подшипники – камни для часов – обраба-тывают на лазерных стан-ках-автоматах.

    Слайд 12

    Лазерный луч сжигает любой, даже самый прочный и жаростой-кий материал. Лазерные станки для шлифовки дорожки качения в кольцах сверхмалых подшипников.

    Слайд 13

    Применение лазеровв медицине

    В руке у хирурга лазерный скаль-пель. Глазную операцию, которая раньше была бы очень сложной(или невозможной вообще), теперь можно проводить амбулаторно.

    Слайд 14

    Красный луч рубинового лазера свободно проходит сквозь оболочку красного шарика и поглощается синим, прожигая его. Поэтому при хирургической операции световой луч воздействует на стенку кровеносного сосуда, «не замечая» самой крови.

    Слайд 15

    Лазерный перфоратор «Эрмед-303» для бесконтактного взятия проб крови. Первый отечественный лазерный аппарат «Мелаз-СТ», применяю-щийся в стоматологии.

    Слайд 16

    Применение лазеровв экологии

    Лазеры на красителях позволяют следить за состоянием атмосферы. Современные города накрыты «колпаком» пыль-ного, закопченного воздуха. О степени его загрязнения можно судить по тому, насколько сильно в нем рассеиваются лазер-ные лучи с разной длиной волны. В чистом воздухе свет не рассеивается, его лучи становятся невидимыми.

    Слайд 17

    Применение лазеровпри посадке самолетов

    Заходя на посадку, самолет движется по пологой траекто-рии – глиссаде. Лазерное устрой-ство, помогающее пилоту, особенно в непогоду, тоже названо «Глис-сада». Его лучи позволяют точно сориентироваться в воздушном прост-ранстве над аэро-дромом.

    Слайд 21

    Литература

    С.В.ГромовФизика. 11класс/ М. «Просвещение». 2002г. С.Д.Транковский. Книга о лазерах / М. «Детская литература». 1988г. Большой энциклопедический словарь школьника / М. «Большая Российская энциклопедия». 2001г. Энциклопедия для детей.Техника. / М. Аванта. 2004г. Энциклопедический словарь юного физика / М. «Педагогика-Пресс». 1997г.

    Слайд 22

    Слайд- презентацию оформила учитель физики МОУ «Большекустовская средняя общеобразовательная школа» Усынина Любовь Владимировна 2007 г.

    Посмотреть все слайды

    Третьякова Анастасия

    Свойства, устройство, принцип действия, применение и виды лазеров.

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Презентация по физике на тему: «Лазеры » ученицы 11 класса ГБОУ СОШ №1465 Третьяковой Анастасии Учитель физики Л.Ю. Круглова

    Лазеры Оптические квантовые генераторы

    Лазер - устройство, в котором энергия (тепловая, химическая, электрическая) преобразуется в энергию электромагнитного поля - лазерный луч. Слово лазер образовано как сочетание первых букв слов английского выражения “Light Amplification by Stimulated Emission Radiation”- «усиление света при помощи индуцированного излучения» Что же такое лазер?

    Под индуцированным (вынужденным) излучением понимается излучение возбужденных атомов под действием падающего на них света. Замечательной особенностью этого излучения является то, что возникшая при индуцированном излучении волна не отличается от волны, падающей на атом ни частотой, ни фазой, ни поляризацией.

    В 1916 г Эйнштейн высказал идею о существовании эффекта вынужденного излучения. В 1940 г советский физик В.А. Фабрикант указал на возможность использования вынужденного излучения для усиления электромагнитных волн. В 1954 г Н.Г. Басов, А.М. Прохоров и независимо от них Ч. Таунс разработали принцип генерации и усиления радиоволн, используя явление индуцированного излучения. В 1963 г за разработку нового принципа генерации и усиления радиоволн Н.Г. Басов, А.М. Прохоров и Ч. Таунс были удостоены Нобелевской премии. 1916 – 1960 г - «Золотой век» создания чудесного луча. В 1960г в США был создан первый лазер в видимом диапазоне спектра (ОКГ). Историческая справка

    Историческая справка Впервые в нашей стране созданы полупроводниковые лазеры. Жорес Иванович Алфёров - автор основополагающих работ в области многослойных гетероструктур, ставших основой современных полупроводниковых лазеров. Жорес Алфёров – лауреат Нобелевской премии в области физики за 2000 год.

    Перед вами лабораторный лазер. У многих из вас есть и лазерные указки. Что же особенного в этих источниках света? Высокая оценка изобретения лазера, наверное, заслуженная? Дело в том, что лазерные источники света обладают рядом преимуществ по сравнению с другими источниками света.

    Свойства лазерного излучения Лазеры способны создавать пучки с очень малым углом расхождения (около радиан). Свет лазера обладает исключительной монохроматичностью. Лазеры являются самыми мощными источниками света. Лазерный луч является самым емким носителем информации.

    Устройство лазера Все лазеры состоят из трёх основных частей: активной (рабочей) среды; системы накачки (источник энергии); оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя). Каждая из них обеспечивает для работы лазера выполнение своих определённых функций. Лазеры работают либо в импульсном режиме, либо действуя непрерывно.

    Принцип действия В обычных условиях атомы находятся в низшем энергетическом состоянии. За счет поглощения энергии волны часть атомов переходит в высшее энергетическое состояние (на 3 энергетический уровень)

    Принцип действия На уровне 3 у атомов «время жизни» около с,после чего они самопроизвольно переходят в состояние 2 без излучения энергии. « В ремя жизни» на уровне 2 составляет с. Создается «перенаселенность» этого уровня возбужденными атомами. Атомы, «перенаселившие» 2 уровень, самопроизвольно переходят на первый уровень с излучением большого количества энергии.

    Виды лазеров Рубиновый лазер Импульсная лампа с зеркальным отражателем «накачивает» энергию в рубиновый стержень. В веществе стержня, возбужденном световой вспышкой, возникает лавина фотонов. Отражаясь в зеркалах, она усиливается и вырывается наружу лазерным лучом.

    Между зеркалами находится запаянная трубка с газом, который возбуждается электрическим током. Виды лазеров Газовый лазер

    Виды лазеров Газово-динамический лазер Похож на реактивный двигатель. В камере сгорания сжигается угарный газ с добавлением керосина или бензина, или спирта. В мощном газодинамическом лазере свет рождает струю раскаленного газа при давлении в десятки атмосфер. Проносясь между зеркалами, молекулы газа начинают отдавать энергию в виде световых квантов, мощность которых 150-200 кВт.

    Виды лазеров Полупроводниковый лазер В таком лазере используются излучательные переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами или подзонами кристалла.

    Виды лазеров Жидкостный лазер Жидкость с красителем в специальном сосуде устанавливается между зеркалами. Энергия молекулы красителя «накачивается» оптически с помощью газовых лазеров. В тяжелых молекулах органических красителей вынужденное излучение возникает сразу в широкой полосе длин волн. С помощью светофильтров выделяют свет одной длины волны.

    Наука Техника и связь Медицина и биология Военное дело Локация небесных тел Линии связи Лазерная хирургия Лазерное оружие Эталон длины Обработка материалов Лечение опухолей Противоракетные системы Лазерный термоядерный синтез Лазеры в ЭВТ Стимуляция роста растений Оптический локатор Сверхскоростная фотография Лазерный гироскоп Разделение изотопов Голография Спектроскопия Применение лазеров

    «Создание лазеров не только коренным образом изменило оптику, но и оказало огромное влияние на многие области современной физики, химии, кибернетики, биологии, медицины, технологии. Сейчас мы видим, что когерентный свет открыл новые, совершенно неожиданные возможности для решения кардинальных проблем нашей бурно развивающейся цивилизации – энергетической, информационной, технологической. Широкое применение лазеров означает качественное преобразование в производительных сферах общества, подобное внедрению в производство и жизнедеятельность человека электричества». (Н. Г. Басов) Подводим итоги

    http:// festival.1september.ru/articles/574592/ http://ru.wikipedia.org/wiki/% D0%9B%D0%B0%D0%B7%D0%B5%D1%80 http://ponimai.su/cmspage/842 /----- С.В.Громов Физика. 11класс/ М. «Просвещение». 2002г. С.Д.Транковский. Книга о лазерах / М. «Детская литература». 1988г. Большой энциклопедический словарь школьника / М. «Большая Российская энциклопедия». 2001г. Энциклопедия для детей. Техника. / М. Аванта. 2004г. Энциклопедический словарь юного физика / М. «Педагогика-Пресс». 1997г. Источники информации

    Слайд 2

    Слово ЛАЗЕР - это акроним, который расшифровывается, как Усиление Света путем Вынужденной Эмиссии Излучения ((L) light (A) amplification (S) stimulatedbythe (E) emissionof (R) radiation) и описывает способ генерации света. Все лазеры являются оптическими усилителями, которые работают путем накачивания (возбуждения) активной среды, помещенной между двумя зеркалами, одно из которых пропускает часть излучения. Активная среда - это совокупность специально подобранных атомов, молекул или ионов, которые могут быть в газообразном, жидком или твердом состоянии и которые при возбуждении путем нагнетающего действия будут генерировать лазерное излучение, т.е. испускать излучение в виде световых волн (называемых фотонами). Накачка жидкости и твердых тел достигается путем облучения их светом импульсной лампы, а газы накачиваются при помощи электрического разряда. Что такое лазер?

    Слайд 3

    Свойства лазерного света Световой луч коллимированный, что означает, что он перемещается в одном направлении с очень маленьким расхождением даже на очень большие расстояния Лазерный свет - монохромный, состоящий из одного цвета или узкого диапазона цветов. У обычного света очень широкий диапазон длин волн или цветов Лазерный свет - когерентный, что означает, что все световые волны перемещаются в фазе вместе как во времени, так и в пространстве Лазер - это устройство, которое создает и усиливает узкий, интенсивный луч когерентного света

    Слайд 4

    Сегодня лазеры широко применяются в медицине, производстве, строительной промышленности, геодезии, бытовой электронике, научной аппаратуре и военных системах. Сегодня используются буквально биллионы лазеров. Они являются составляющей таких привычных устройств, как сканеры штрих-кода, используемые в супермаркетах, сканеры, лазерные принтеры и проигрыватели компакт-дисков. Применение лазеров

    Слайд 5

    После изобретения Майманом в 1960 году рубинового лазера, было предложено множество его потенциальных применений. В области медицины возможности лазеров стали развиваться быстрее после 1964 года, когда был изобретен лазер на диоксиде углерода, который вскоре дал хирургам возможность выполнять очень сложные операции, используя фотоны вместо скальпеля, для проведения операций. Лазерный свет может проникать внутрь тела, выполняя операции, что несколько лет назад было почти невозможно выполнить, при минимальном риске или дискомфорте для пациента. Более короткие (зеленые) лазеры используются для "сварки" отслоившейся сетчатки, и используются для растяжения молекул белка для измерения их силы и т.д. Применение лазеров в медицине

    Слайд 6

    В 1964 году была предположена возможность применения рубинового лазера для лечения кариеса, что привлекло внимание всего мира. В 1967 году при попытке удалить кариес и подготовить полость при помощи рубинового лазера, но не смог избежать повреждения пульпы зуба, несмотря на хорошие результаты, полученные на извлеченных зубах. Позднее, подобные базовые исследования с лазером CO2 также столкнулись с этой проблемой. Чтобы минимизировать накопление тепла, вместо непрерывного излучения использовались импульсные лазеры. Дальнейшие исследования продемонстрировали, что лазер может давать небольшой местный анестезирующий эффект. Дальнейшие разработки привели к созданию лазера, который просверливает эмаль и дентин полностью. При этом лазер сохраняет больше здоровой ткани зуба. С сегодняшними лазерами практически нет нежелательного нагревания, нет шума и вибрации. Покидая стоматологическое кресло, большинство пациентов не ощущали боли, им не надо было дожидаться, пока пройдут действие анестетика и онемение, и не испытывали почти никакого послеоперационного дискомфорта. Лазеры точны и практически безболезненны и могут изменить Ваше мнение о посещении стоматолога. Они могут изменить все. Применение лазеров в стоматологии

    Слайд 7

    Лазеры - это значительный прорыв в стоматологии, как для десен и других мягких тканей, так и для самих зубов. В наши дни значительное количество лазерных технологий и методов лечения получили широкое применение. Сегодня лазеры используются в следующих областях стоматологии: Профилактика Пародонтология Эстетическая стоматология Эндодонтия Хирургия Имплантодонтия Протезирование Применение лазеров в стоматологии

    Слайд 8

    В настоящее время лазеры широко используются в деревообрабатывающей промышленности, причем за последние годы область их распространения значительно расширилась. Применение лазеров облегчает позиционирование заготовок (видеоролик), совмещение наружных рисунков двух заготовок, минимизацию образующихся отходов, монтаж сложных конструкционных элементов зданий и сооружений. Лазеры, применяемые в деревообработке, могут воспроизводить линию, пересечение линий (обозначать центр) или 2-х или 3-х мерное изображение (проекторы). Лазерные системы в деревообработке

    Слайд 9

    в качестве логических элементов для ввода и считывания из запоминающих устройств в вычислительных машинах лазерный принтер оптическая передача информации Лазеры в вычислительной технике

    Слайд 10

    Лазер также можно использовать для бесконтактных измерений геометрических размеров (зазор, длина, ширина, толщина, высота, глубина, диаметр). С помощью лазера также можно получать комплексные измерения: отклонение от вертикальности; величину плоскостности поверхности; точность профилей; Существует возможность получать производные величины, такие, как прогиб и выпуклость. Лазерные измерительные системы позволяют в автоматическом режиме контролировать параметры продукции и немедленно изменять параметры производственной линии, если происходит, какое либо отклонение. Продукт в этой области эксклюзивен, поскольку обладает следующими свойствами: Высокоточен Позволяет контролировать качество и характеристики геометрически сложных деталей Не повреждает и не разрушает поверхность продукт Работает в любых условиях на любых поверхностях Легко интегрируется в уже действующую производственную линию Лазеры в измерениях

    Слайд 11

    Классификация лазеров Лазеры класса IНе представляют опасности при непрерывном наблюдении или разработаны так, чтобы предотвратить попадание человека под лазерное излучение (например, лазерные принтеры) Видимые лазеры класса 2 (от 400 до 700 нм)Лазеры, излучающие видимый свет, который из-за естественной человеческой отрицательной реакции обычно не представляют опасности, но могут представлять, если смотреть прямо на лазерный свет в течение продолжительного времени. Класс 3aЛазеры, которые обычно не причиняют вред при кратковременном попадании в глаза, но могут представлять опасность при наблюдении с использованием собирающей оптики (волоконно-оптическая лупа или телескоп) Класс 3bЛазеры, которые представляют опасность для глаз и кожи при прямом попадании лазерного света. Лазеры класса 3b не генерируют опасное диффузное отражение, за исключением попадания с близкого расстояния Лазеры класса 4Лазеры, которые представляют опасность для глаз в результате прямого, зеркального и диффузионного отражений. Кроме того, такие лазеры могут быть пожароопасными и вызывать ожоги на коже.

    Слайд 12

    ЗАЩИТА ГЛАЗ - Все, кто находится в операционной, должны надевать специальные защитные очки. Свет, выходящий из лазера, может серьезно повредить роговицу и сетчатку незащищенных глаз. Очки должны иметь боковую защиту и надеваться поверх обычных очков. Лазерные защитные очки должны быть доступны и надеваться всем персоналом, находящимся внутри Номинальной опасной зоны лазеров класса 3 b и класса 4, где может произойти облучение свыше Максимально разрешенного. Коэффициент поглощения оптической плотности лазерных защитных очков для каждой длины волны лазера определяется LaserSafetyOfficer (LSO). На всех лазерных защитных очках четко отмечается оптическая плотность и длина волны, для защиты от которых предназначены очки. Лазерные защитные очки перед использованием должны проверяться на повреждения. ОТРАЖЕНИЕ - Лазерный свет легко отражается и нужно внимательно следить за тем, чтобы луч не направлялся на полированные поверхности. ЭЛЕКТРИЧЕСКАЯ ОПАСНОСТЬ - Внутренние части лазера находятся под высоким напряжением и излучают невидимым лазерные лучи без всякой экранировки. Только специалисты, обученные электрической и лазерной безопасности, авторизированны проводить внутреннее обслуживание. Меры безопасности

    Слайд 13

    – вид оружия направленной энергии, основанный на использовании электромагнитного излучения высокоэнергетических лазеров. Поражающий эффект ЛО определяется в основном термомеханическим и ударно – импульсным воздействием лазерного луча на цель. В зависимости от плотности потока лазерного излучения эти воздействия могут привести к временному ослеплению человека или к разрушению корпуса ракеты, самолета и др. В последнем случае в результате теплового воздействия лазерного луча происходит расплавление или испарение оболочки поражаемого объекта. При достаточно большой плотности энергии в импульсном режиме наряду с тепловым осуществляется ударное воздействие, обусловленное возникновением плазмы. В настоящее время в США продолжаются работы по созданию авиационного комплекса лазерного оружия. Вначале предполагается отработать демонстрационный образец для транспортного самолета Боинг‑747 и после завершения предварительных исследований перейти в 2004г. к этапу полномасштабной разработки. По состоянию на середину 90‑х годов наиболее отработанным считалось тактическое лазерное оружие, обеспечивающее поражение оптико‑электронных средств и органов зрения человека. Лазерное оружие


    Что такое лазер? ЛАЗЕР (оптический квантовый генератор) – устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения. Слово « лазер » – аббревиатура слов английской фразы «Light Amplification by Stimulated Emission of Radiation» – усиление света вынужденным излучением.


    Краткая история появления лазера 1916 г. - А. Эйнштейн предсказывает существование явления вынужденного излучения физической основы работы любого лазера г. – теоретическое обоснование этого явления П. Дираком г. – экспериментальное подтверждение явления вынужденного излучения Р. Ладенбургом и Г. Копферманном г. – первый микроволновый генератор (мазер на аммиаке), создатели Ч. Таунс и независимо от него А. Прохоров и Н. Басов г. - Т. Мейман продемонстрировал работу первого оптического квантового генератора лазера. В последующие годы происходит бурное развитие, и изобретаются все новые и новые виды лазеров (химические, полупроводниковые, лазеры на красителях и другие).